Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-28T06:29:36.823Z Has data issue: false hasContentIssue false

Some properties of boundary layer flow during the transition from laminar to turbulent motion

Published online by Cambridge University Press:  28 March 2006

S. Dhawan
Affiliation:
Department of Aeronautics, Indian Institute of Science, Bangalore
R. Narasimha
Affiliation:
Department of Aeronautics, Indian Institute of Science, Bangalore

Abstract

Transition in the boundary layer on a flat plate is examined from the point of view of intermittent production of turbulent spots. On the hypothesis of localized laminar breakdown, for which there is some expermental evidence, Emmons’ probability calculations can be extended to explain the observed statistical similarity of transition regions. Application of these ideas allows detailed calculations of the boundary layer parameters including mean velocity profiles and skin friction during transition. The mean velocity profiles belong to a universal one-parameter family with the intermittency factor as the parameter. From an examination of experimental data the probable existence of a relation between the transition Reynolds number and the rate of production of the turbulent spots is deduced. A simple new technique for the measurement of the intermittency factor by a Pitot tube is reported.

Type
Research Article
Copyright
© 1958 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Burgers, J. M. 1925 Proc. 1st Internat. Cong. Appl. Mech., Delft, 113.
Chapman, D. R. & Kester, R. H. 1933 J. Aero. Sci. 20, 441.
Charters, A. C. 1943 Nat. Adv. Comm. Aero., Wash., Tech. Note no. 891.
Clauser, F. H. 1956 Article in Advances in Applied Mechanics, Vol. 4. New York: Academic Press.
Coles, D. 1954 J. Aero. Sci. 21, 433.
Corrsin, S. & Kistler, A. L. 1954 Nat. Adv. Comm. Aero., Wash., Tech. Note no. 3133.
Dhawan, S. 1953 Nat. Adv. Comm. Aero., Wash., Rep. no. 1121.
Dryden, H. L. 1953 J. Aero. Sci. 20, 477.
Emmons, H. W. 1951 J. Aero. Sci. 18, 490.
Frankl, F. & Voishel, V. 1943 Nat. Adv. Comm. Aero., Wash., Tech. Mem. no. 1053.
Gazley, C. Jr., 1953 J. Aero. Sci. 20, 19.
Goldstein, S. (Ed.) 1938 Modern Developments in Fluid Dynamics, Vol. 2. Oxford University Press.
Hama, F. R., Long, J. D. & Hagerty, J. C. 1957 J. Appl. Phys. 28, 388.
Higgins, R. W. & Pappas, C. C. 1951 Nat. Adv. Comm. Aero., Wash., Tech. Note no. 2351.
Hunsaker, J. C. 1939 J. Aero. Sci. 6, 104.
Lees, L. 1952 Consolidated Aircraft Corporation Rep. no ZA-7–006.
Liepmann, H. W. 1945 Nat. Adv. Comm. Aero., Wash., A.C.R. no. 4J28.
Lin, C. C. 1955 The Theory of Hydrodynamic Stability. Cambridge University Press.
Mitchner, M. 1954 J. Aero. Sci. 21, 350.
Narasimha, R. 1957 J. Aero. Sci. 24, 711.
Persh, J. 1955 J. Aero. Sci. 22, 443.
Schubauer, G. B. & Klebanoff, P. S. 1955 Nat. Adv. Comm. Aero., Wash., Tech. Note no. 3489.
Schubauer, G. B. & Skramstad, H. K. 1947 J. Aero. Sci. 14, 69.
Schlichting, H. 1955 Boundary Layer Theory. London: Pergamon Press.
Shoulberg, R. H., Hill, J. A. R. & Rivas, M. A. Jr., 1954 J. Aero. Sci. 21, 763.
Silverstein, A. & Becker, J. V. 1939 Nat. Adv. Comm. Aero., Wash., Rep. no. 637.
Tani, I. & Hama, F. R. 1953 J. Aero. Sci. 20, 289.
Winter, K. G., Scott-Wilson, J. B. & Davies, F. V. 1954 Aero. Res. Counc., Lond., Curr. Pap. no. 212.
Wright, E. A. & Bailey, G. W. 1939 J. Aero. Sci. 6, 485.