Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-09T21:43:11.206Z Has data issue: false hasContentIssue false

Some observations of tip-vortex cavitation

Published online by Cambridge University Press:  26 April 2006

R. E. A. Arndt
Affiliation:
St. Anthony Falls Hydraulic Laboratory, University of Minnesota. Minneapolis. MN 55455, USA
V. H. Arakeri
Affiliation:
Indian Institute of Science, Bangalore, India
H. Higuchi
Affiliation:
Syracuse University, NY 13210, USA

Abstract

Cavitation has been observed in the trailing vortex system of an elliptic planform hydrofoil. A complex dependence on Reynolds number and gas content is noted at inception. Some of the observations can be related to tension effects associated with the lack of sufficiently large-sized nuclei. Inception measurements are compared with estimates of pressure in the vortex obtained from LDV measurements of velocity within the vortex. It is concluded that a complete correlation is not possible without knowledge of the fluctuating levels of pressure in tip-vortex flows. When cavitation is fully developed, the observed tip-vortex trajectory shows a surprising lack of dependence on any of the physical parameters varied, such as angle of attack, Reynolds number, cavitation number, and dissolved gas content.

Type
Research Article
Copyright
© 1991 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arnol'D, V. I. 1966 Sur la géométrie différentielle des groups de Lie de dimension infinie et ses applications à l'hydrodynamique des fluides parfaits. Ann. Inst. Fourier 16, 319361.Google Scholar
Arnol'D, V. I. 1969 On an a priori estimate in the theory of hydrodynamical stability. Am. Math. Soc. Transl. 79, 267269.Google Scholar
Bardos, C. 1972 Existence et unicité de la solution de l’équation d'Euler en dimension deux. J. Math. Anal. Appl. 40, 769790.Google Scholar
Boldrighini, C. & Frigio, S. 1980 Equilibrium states for a plane incompressible perfect fluid. Commun. Math. Phys. 72, 5576.Google Scholar
Capéran, Ph. 1989 Turbulence sumise à des forces extérieures: structure et mécanismes quasi-2D en fluide stratifié et anisotropic sous déformation plane. Thèse d'Etat, Grenoble.
Cottet, G. H. 1987 Analyse numérique des méthodes particulaires pour certains problèmes non linéaires. Thèse, Université Paris VI.
Deem, G. S., Zabusky, N. J. 1978 Vortex waves: stationary V-states, interactions, recurrence, and breaking. Phys. Rev. Let. 40, 859862.Google Scholar
Dritschel, D. G. 1989 Contour dynamics and contour surgery: numerical algorithms for extended, high resolution modelling of vortex dynamics in two-dimensional inviscid, incompressible flows. Computer Phys. Rep. 10, 7146.Google Scholar
Ellis, R. S. 1985 Entropy, Large Deviations and Statistical Mechanics. Springer.
Van Heijst, G. J. F. & Kloosterzeil, R. C. 1989 Tripolar vortices in a rotating fluid. Nature 338, 569571.Google Scholar
Holloway, G. 1986 Eddies, waves, circulation, and mixing: statistical geofluid mechanics. Ann. Rev. Fluid Mech. 18, 91147.Google Scholar
Hopfinger, E. J. 1989 Turbulence and vortices in rotating fluids. Proc. XVII Intl Congr. of Theoretical and Applied Mechanics, pp. 117138. North Holland.
Hoskins, B. J. 1975 The geostrophic momentum approximation and the semi-geostrophic equations. J. Atmos. Sci. 32, 233242.Google Scholar
Hoskins, B. J., McIntyre, M. E. & Robertson, A. W. 1985 On the use and significance of isentropic potential vorticity maps. Q. J. R. Met. Soc. 111, 877946.Google Scholar
Jaynes, E. T. 1985 Where do we go from here? In Maximum Entropy and Bayesian Methods in Inverse Problems (ed. C. Ray Smith & W. T. Grandy). Reidel.
Kato, T. 1967 On the classical solutions of the two-dimensional non stationary Euler equation. Arch. Rat. Mech. Anal. 25, 302324.Google Scholar
Kraichnan, R. H. 1975 Statistical dynamics of two-dimensional flow. J. Fluid Mech. 67, 155175.Google Scholar
Kraichnan, R. H. & Montgomery, D. 1980 Two-dimensional turbulence. Rep. Prog. Phys. 43, 547617.Google Scholar
Lee, T. D. 1952 On some statistical properties of hydrodynamical and magneto-hydrodynamical fields. Q. Appl. Maths 10, 6974.Google Scholar
Legras, B., Santangelo, P. & Benzi, R. 1988 High resolution numerical experiments for forced two-dimensional turbulence. Europhys. Lett. 5, 3742.Google Scholar
Leith, C. E. 1984 Minimum enstrophy vortices. Phys. Fluids 27, 13881395.Google Scholar
Montgomery, D. 1985 Maximal entropy in fluid and plasma turbulence. In Maximum Entropy and Bayesian Methods in Inverse Problems (ed. C. Ray Smith & W. T. Grandy). Reidel.
Nguyen Duc, J. M. & Sommeria, J. 1988 Experimental characterization of steady two-dimensional vortex couples. J. Fluid Mech. 192, 175192.Google Scholar
Novikov, E. A. 1976 Dynamics and statistics of a system of vortices. Sov. Phys. JETP. 41, 937943.Google Scholar
Olver, P. J. 1986 Applications of Lie Groups to Differential Equations. Springer.
Onsager, L. 1949 Statistical hydrodynamics. Nuovo Cim. suppl. 6, 279.Google Scholar
Overman, E. A. & Zabusky, N. J. 1982 Evolution and merging of isolated vortex structures. Phys. Fluids 25, 12971305.Google Scholar
Poitin, Y. B. & Lundgren, T. S. 1976 Statistical mechanics of two dimensional vortices in a bounded container. Phys. Fluids 10, 14591470.Google Scholar
Rhines, P. B. 1986 Vorticity dynamics of the oceanic general circulation. Ann. Rev. Fluid Mech. 18, 433497.Google Scholar
Robert, R. 1989 Concentration et entropie pour les mesures d'Young. C. R. Acad. Sci. Paris 309 (I), 757760.Google Scholar
Robert, R. 1990 Etat d’équilibre statistique pour l’écoulement bidimensionnel d'un fluide parfait. C. R. Acad. Sci. Paris 311 (I), 575578.Google Scholar
Robert, R. 1991 Maximum entropy principle for two-dimensional Euler equations. In preparation.
Saffman, P. G. & Baker, G. R. 1979 Vortex interactions. Ann. Rev. Fluid Mech. 11, 95122.Google Scholar
Salmon, R. 1985 New equations for nearly geostrophic flow. J. Fluid Mech. 153, 461477.Google Scholar
Serre, D. 1984 Les invariants du premier ordre de l’équation d'Euler en dimension trois. Physica 13D, 105136.Google Scholar
Sommeria, J., Meyers, S. D. & Swinney, H. L. 1988 Laboratory simulation of Jupiter's Great Red Spot. Nature 331, 1.Google Scholar
Sommeria, J., Staquet, C. & Robert, R. 1991 Equilibrium states of a shear layer. J. Fluid Mech. (In press.)Google Scholar
Youdovitch, V. I. 1963 Non stationary flow of an ideal incompressible liquid. Zh. Vych. Mat. 3, 103266.Google Scholar
Young, L. C. 1942 Generalized surfaces in the calculus of variations. Ann. Math. 43, 84103.Google Scholar
Zabusky, N. J., Hughes, M. & Roberts, K. V. 1979 Contour dynamics of the Euler equations in two dimensions. J. Comput. Phys. 30, 96106.Google Scholar