Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-24T22:02:26.062Z Has data issue: false hasContentIssue false

Solidification of binary aqueous solutions under periodic cooling. Part 2. Distribution of solid fraction

Published online by Cambridge University Press:  07 May 2019

Guang-Yu Ding
Affiliation:
School of Physics Science and Engineering, Tongji University, Shanghai 200092, China Department of Physics, Chinese University of Hong Kong, Hong Kong, China
Andrew J. Wells
Affiliation:
Department of Physics, University of Oxford, Oxford OX1 3PU, UK
Jin-Qiang Zhong*
Affiliation:
School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
*
Email address for correspondence: [email protected]

Abstract

We report an experimental study of the distributions of temperature and solid fraction of growing $\text{NH}_{4}\text{Cl}$$\text{H}_{2}\text{O}$ mushy layers that are subjected to periodical cooling from below, focusing on late-time dynamics where the mushy layer oscillates about an approximate steady state. Temporal evolution of the local temperature $T(z,t)$ at various heights in the mush demonstrates that the temperature oscillations of the bottom cooling boundary propagate through the mushy layer with phase delays and substantial decay in the amplitude. As the initial concentration $C_{0}$ increases, we show that the decay rate of the thermal oscillation with height also decreases, and the propagation speed of the oscillation phase increases. We interpret this as a result of the solid fraction increasing with $C_{0}$, which enhances the thermal conductivity but reduces the specific heat of the mushy layer. We present a new methodology to determine the distribution of solid fraction $\unicode[STIX]{x1D719}(z)$ in mushy layers for various $C_{0}$, using only measurements of the temperature $T(z,t)$. The method is based on the phase behaviour during thermal modulation, and opens up a new approach for inferring mushy-layer properties in geophysical and engineering settings, where direct measurements are challenging. In our experiments, profiles of the solid fraction $\unicode[STIX]{x1D719}(z)$ exhibit a cliff–ramp–cliff structure with large vertical gradients of $\unicode[STIX]{x1D719}$ near the mush–liquid interface and also near the bottom boundary, but much more gradual variation in the interior of the mushy layer. Such a profile structure is more pronounced for higher initial concentration $C_{0}$. For very low concentration, the solid fraction appears to be linearly dependent on the height within the mush. The volume-average of the solid fraction, and the local fluctuations in $\unicode[STIX]{x1D719}(z)$ both increase as $C_{0}$ increases. We suggest that the fast increase of $\unicode[STIX]{x1D719}(z)$ near the bottom boundary is possibly due to diffusive transport of solute away from the bottom boundary and the depletion of solute content near the basal region.

Type
JFM Papers
Copyright
© 2019 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aussillous, P., Sederman, A. J., Gladden, L. F., Huppert, H. E. & Worster, M. G. 2006 Magnetic resonance imaging of structure and convection in solidifying mushy layers. J. Fluid Mech. 552, 99125.Google Scholar
Backstrom, L. G. E. & Eicken, H. 2006 Capacitance probe measurements of brine volume and bulk salinity in first-year sea ice. Cold Reg. Sci. Technol. 46 (3), 167180.Google Scholar
Beckermann, C. & Viskanta, R. 1988 Double-diffusive convection due to melting. Intl J. Heat Mass Transfer 31, 20772089.Google Scholar
Carslaw, H. S. & Jaeger, J. C. 1959 Conduction of Heat in Solids, 2nd edn. Oxford University Press.Google Scholar
Chalmers, B. 1964 Principles of Solidification. Wiley.Google Scholar
Chen, C. F. 1995 Experimental study of convection in a mushy layer during directional solidification. J. Fluid Mech. 293, 8198.Google Scholar
Chen, C. F. & Chen, F. 1991 Experimental study of directional solidification of aqueous ammonium chloride solution. J. Fluid Mech. 227, 567586.Google Scholar
Chen, F. 1997 Formation of double-diffusive layers in the directional solidification of binary solution. J. Cryst. Growth 179, 277286.Google Scholar
Chiareli, A. O. P. & Worster, M. G. 1992 On measurement and prediction of the solid fraction within mushy layers. J. Cryst. Growth 125 (3–4), 487494.Google Scholar
Copley, S., Giamei, A., Johnson, S. & Hornbecker, M. 1970 The origin of freckles in unidirectionally solidified castings. Metall. Mater. Trans. B 1 (8), 21932204.Google Scholar
Ding, G.-Y., Wells, A. J. & Zhong, J.-Q. 2019 Solidification of binary aqueous solutions under periodic cooling. Part 1. Dynamics of mushy-layer growth. J. Fluid Mech. 870, 121146.Google Scholar
Eicken, H., Bock, C., Wittig, R., Miller, H. & Poertner, H. O. 2000 Magnetic resonance imaging of sea-ice pore fluids: methods and thermal evolution of pore microstructure. Cold Reg. Sci. Technol. 31 (3), 207225.Google Scholar
Feltham, D. L., Untersteiner, N., Wettlaufer, J. S. & Worster, M. G. 2006 Sea ice is a mushy layer. Geophys. Res. Lett. 33, L14501.Google Scholar
Golden, K. M., Eicken, H., Heaton, A. L., Miner, J., Pringle, D. J. & Zhu, J. 2007 Thermal evolution of permeability and microstructure in sea ice. Geophys. Res. Lett. 34 (16), L16501.Google Scholar
Hallworth, M. A. & Huppert, H. E. 2004 Crystallization and layering induced by heating a reactive porous medium. Geophys. Res. Lett. 31, L13605.Google Scholar
Hallworth, M. A., Huppert, H. E. & Woods, A. W. 2005 Dissolution-driven convection in a reactive porous medium. J. Fluid Mech. 535, 255285.Google Scholar
Head, M. J. 1983 The Use of Miniature Four-electrode Conductivity Probes for High Resolution Measurement of Turbulent Density or Temperature Variations in Salt-stratified Water Flows. University of California, San Diego.Google Scholar
Hobbs, P. V. 2010 Ice Physics. Oxford University Press.Google Scholar
Huguet, L., Alboussiere, T., Bergman, M. I., Deguen, R., Labrosse, S. & Lesceur, G. 2016 Structure of a mushy layer under hypergravity with implications for earth’s inner core. Geophys. J. Intl 204, 17291755.Google Scholar
Hunke, E. C., Notz, D., Turner, A. K. & Vancoppenolle, M. 2011 The multiphase physics of sea ice: a review for model developers. Cryosphere 5 (4), 9891009.Google Scholar
Hunkeler, P. A., Hendricks, S., Hoppmann, M., Farquharson, C. G., Kalscheuer, T., Grab, M., Kaufmann, M. S., Rabenstein, L. & Gerdes, R. 2015 Improved 1D inversions for sea ice thickness and conductivity from electromagnetic induction data: inclusion of nonlinearities caused by passive bucking multifrequency EM sea ice inversions. Geophysics 81 (1), WA45.Google Scholar
Huppert, H. E. 1990 The fluid mechanics of solidification. J. Fluid Mech. 212, 209240.Google Scholar
Huppert, H. E. & Worster, M. G. 1985 Dynamic solidification of a binary melt. Nature 314, 703707.Google Scholar
Jackson, K., Wilkinson, J., Maksym, T., Meldrum, D., Beckers, J., Haas, C. & Mackenzie, D. 2013 A novel and low-cost sea ice mass balance buoy. J. Atmos. Ocean. Technol. 30 (11), 26762688.Google Scholar
Jeevaraj, C. G. & Imberger, J. 1991 Experimental study of double-diffusive instability in sidewall heating. J. Fluid Mech. 222, 565586.Google Scholar
Lieb-Lappen, R. M., Golden, E. J. & Obbard, R. W. 2017 Metrics for interpreting the microstructure of sea ice using x-ray micro-computed tomography. Cold Reg. Sci. Technol. 138, 2435.Google Scholar
Loper, D. E. & Roberts, P. H. 1983 Compositional convection and the gravitationally powered dynamo. Stellar and Planetary Magnetism (ed. Soward, A. M.), pp. 297327. Gordon and Breach Science Publishers.Google Scholar
Neufeld, J. A. & Wettlaufer, J. S. 2008 An experimental study of shear-enhanced convection in a mushy layer. J. Fluid Mech. 612, 363385.Google Scholar
Notz, D., Wettlaufer, J. S. & Worster, M. G. 2005 A non-destructive method for measuring the salinity and solid fraction of growing sea ice in-situ. J. Glaciol. 51, 159166.Google Scholar
Notz, D. & Worster, M. G. 2008 In situ measurements of the evolution of young sea ice. J. Geophys. Res. Oceans 113 (C3), C03001.Google Scholar
Notz, D. & Worster, M. G. 2009 Desalination processes of sea ice revisited. J. Geophys. Res. Oceans 114 (C5), C05006.Google Scholar
Peppin, S. S. L., Huppert, H. E. & Worster, M. G. 2008 Steady-state solidification of aqueous ammonium chloride. J. Fluid Mech. 599, 465476.Google Scholar
Pesci, A. I., Porter, M. A. & Goldstein, R. E. 2003 Inertially driven buckling and overturning of jets in a Hele-Shaw cell. Phys. Rev. E 68, 056305.Google Scholar
Pringle, D. J., Eicken, H., Trodahl, H. J. & Backstrom, L. G. E. 2007 Thermal conductivity of landfast Antarctic and Arctic sea ice. J. Geophys. Res. Oceans 112 (C4), C04017.Google Scholar
Rees Jones, D. & Worster, M. 2013 Fluxes through steady chimneys in a mushy layer during binary alloy solidification. J. Fluid Mech. 714, 127151.Google Scholar
Richter-Menge, J. A., Perovich, D. K., Elder, B. C., Claffey, K., Rigor, I. & Ortmeyer, M. 2006 Ice mass-balance buoys: a tool for measuring and attributing changes in the thickness of the Arctic sea-ice cover. Ann. Glaciol. 44, 205210.Google Scholar
Rosenberger, F. E. 1979 Fundamentals of Crystal Growth I: Macroscopic Equilibrium and Transport Concepts. Springer.Google Scholar
Sampson, C., Golden, K. M., Gully, A. & Worby, A. P. 2011 Surface impedance tomography for Antarctic sea ice. Deep-Sea Res. II 58 (9), 11491157.Google Scholar
Shirtcliffe, T. G. L., Huppert, H. E. & Worster, M. G. 1991 Measurement of the solid fraction in the crystallization of a binary melt. J. Cryst. Growth 113 (3–4), 566574.Google Scholar
Tait, S. & Jaupart, C. 1989 Compositional convection in viscous melts. Nature 338 (6216), 571574.Google Scholar
Thorpe, S. A., Hutt, P. K. & Soulsby, R. 1969 The effect of horizontal gradients on thermohaline convection. J. Fluid Mech. 38, 375400.Google Scholar
Wells, A. J., Wettlaufer, J. S. & Orszag, S. A. 2010 Maximal potential energy transport: a variational principle for solidification problems. Phys. Rev. Lett. 105 (25), 254502.Google Scholar
Wettlaufer, J. S., Worster, M. G. & Huppert, H. E. 1997 Natural convection during solidification of an alloy from above with application to the evolution of sea ice. J. Fluid Mech. 344, 291316.Google Scholar
Worster, M. G. 1986 Solidification of an alloy from a cooled boundary. J. Fluid Mech. 167, 481501.Google Scholar
Worster, M. G. 1991 Natural convection in a mushy layer. J. Fluid Mech. 224, 335359.Google Scholar
Worster, M. G. 1992 On measurement and prediction of the solid fraction within mushy layers. J. Cryst. Growth 125, 487494.Google Scholar
Worster, M. G. 1997 Convection in mushy layers. Annu. Rev. Fluid Mech. 29, 91122.Google Scholar
Worster, M. G. 2000 Perspectives in Fluid Dynamics: A Collective Introduction to Current Research, pp. 393446. Cambridge University Press.Google Scholar
Yu, J., Bergman, M. I., Huguet, L. & Alboussiere, T. 2015 Partial melting of a Pb-Sn mushy layer due to heating from above, and implications for regional melting of Earth’s directionally solidified inner core. Geophys. Res. Lett. 42, 70467053.Google Scholar
Zhong, J.-Q., Fragoso, A. T., Wells, A. J. & Wettlaufer, J. S. 2012 Finite-sample-size effects on convection in mushy layers. J. Fluid Mech. 704 (2), 89108.Google Scholar