Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-16T15:27:40.062Z Has data issue: false hasContentIssue false

Slug generation processes in co-current turbulent-gas/laminar-liquid flows in horizontal channels

Published online by Cambridge University Press:  03 December 2018

Sha Miao
Affiliation:
Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
Kelli Hendrickson
Affiliation:
Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
Yuming Liu*
Affiliation:
Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
*
Email address for correspondence: [email protected]

Abstract

We theoretically and computationally investigate the physical processes of slug-flow development in concurrent two-phase turbulent-gas/laminar-liquid flows in horizontal channels. The objective is to understand the fundamental mechanisms governing the initial growth and subsequent nonlinear evolution of interfacial waves, starting from a smooth stratified flow of two fluids with disparity in density and viscosity and ultimately leading to the formation of intermittent slug flow. We numerically simulate the entire slug development by means of a fully coupled immersed flow (FCIF) solver that couples the two disparate flow dynamics through an immersed boundary (IB) method. From the analysis of spatial/temporal interface evolution, we find that slugs develop through three major cascading processes: (I) stratified-to-wavy transition; (II) development and coalescence of long solitary waves; and (III) rapid channel bridging leading to slugging. In Process I, relatively short interfacial waves form on the smooth interface, whose growth is governed by the Orr–Sommerfeld instability. In Process II, interfacial waves evolve into long solitary waves through multiple resonant and near-resonant wave–wave interactions. From instability analysis of periodic solitary waves, we show that these waves are unstable to their subharmonic disturbances and grow in amplitude and primary wavelength through wave coalescence. The interfacial forcing from the turbulent gas–laminar liquid interactions significantly precipitates the growth of instability of solitary waves and enhances coalescence of solitary waves. In Process III, we show by an asymptotic analysis that interfacial waves achieve multiple-exponential growth right before bridging the channel, consistent with observations in existing experiments. The present study provides important insights for effective modelling of slug-flow dynamics and the prediction of slug frequency and length, important for design and operation of (heavy-oil/gas) pipelines and production facilities.

Type
JFM Papers
Copyright
© 2018 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Present address: Upstream Research Company, ExxonMobil, Spring, TX 77389, USA.

References

Abrams, J. & Hanratty, T. J. 1985 Relaxation effects observed for turbulent flow over a wavy surface. J. Fluid Mech. 151, 443455.Google Scholar
Andritsos, N. & Hanratty, T. J. 1987a Influence of interfacial waves in stratified gas–liquid flows. AIChE J. 33 (3), 444454.Google Scholar
Andritsos, N. & Hanratty, T. J. 1987b Interfacial instabilities for horizontal gas–liquid flows in pipelines. Intl J. Multiphase Flow 13 (5), 583603.Google Scholar
Andritsos, N., William, L. & Hanratty, T. J. 1989 Effect of liquid viscosity on the stratified–slug transition in horizontal pipe flow. Intl J. Multiphase Flow 15 (6), 877892.Google Scholar
Angelis, V. D., Lombardi, P. & Banerjee, S. 1997 Direct numerical simulation of turbulent flow over a wavy wall. Phys. Fluids 9 (8), 24292442.Google Scholar
Balmforth, N. J. & Mandre, S. 2004 Dynamics of roll waves. J. Fluid Mech. 514, 133.Google Scholar
Barmak, I., Gelfgat, A., Vitoshkin, H., Ullmann, A. & Brauner, N. 2016 Stability of stratified two-phase flows in horizontal channels. Phys. Fluids 28 (4), 044101.Google Scholar
Barnea, D. & Taitel, Y. 1993 Kelvin–Helmholtz stability criteria for stratified flow: viscous versus non-viscous (inviscid) approaches. Intl J. Multiphase Flow 19 (4), 639649.Google Scholar
Batchelor, G. K. & Proudman, I. 1954 The effect of rapid distortion of a fluid in turbulent motion. Q. J. Mech. Appl. Maths 7 (1), 83103.Google Scholar
Belcher, S. E. & Hunt, J. C. R. 1998 Turbulent flow over hills and waves. Annu. Rev. Fluid Mech. 30 (1), 507538.Google Scholar
Benney, D. J. 1966 Long waves on liquid films. Stud. Appl. Maths 45 (1–4), 150155.Google Scholar
Boomkamp, P. A. M. & Miesen, R. H. M. 1996 Classification of instabilities in parallel two-phase flow. Intl J. Multiphase Flow 22, 6788.Google Scholar
Campbell, B. K., Hendrickson, K. & Liu, Y. 2016 Nonlinear coupling of interfacial instabilities with resonant wave interactions in horizontal two-fluid plane Couette–Poiseuille flows: numerical and physical observations. J. Fluid Mech. 809, 438479.Google Scholar
Campbell, B. K. & Liu, Y. 2013 Nonlinear resonant interactions of interfacial waves in horizontal stratified channel flows. J. Fluid Mech. 717, 612642.Google Scholar
Chang, H. 1994 Wave evolution on a falling film. Annu. Rev. Fluid Mech. 26 (1), 103136.Google Scholar
Chang, H. C., Demekhin, E. A. & Kopelevich, D. I. 1993 Nonlinear evolution of waves on a vertically falling film. J. Fluid Mech. 250, 433480.Google Scholar
Cohen, L. S. & Hanratty, T. J. 1965 Generation of waves in the concurrent flow of air and a liquid. AIChE J. 11 (1), 138144.Google Scholar
Fabre, J. & Liné, A. 1992 Modeling of two-phase slug flow. Annu. Rev. Fluid Mech. 24 (1), 2146.Google Scholar
Fan, Z., Lusseyran, F. & Hanratty, T. J. 1993 Initiation of slugs in horizontal gas–liquid flows. AIChE J. 39 (11), 17411753.Google Scholar
Frank, T. 2005 Numerical simulation of slug flow regime for an air–water two-phase flow in horizontal pipes. In Proceedings of the 11th International Topical Meeting on Nuclear Reactor Thermal-Hydraulics (NURETH-11), Avignon, France, October, pp. 26. American Nuclear Society.Google Scholar
Funada, T. & Joseph, D. D. 2001 Viscous potential flow analysis of Kelvin–Helmholtz instability in a channel. J. Fluid Mech. 445, 263283.Google Scholar
Gokcal, B., Wang, Q., Zhang, H.-Q. & Sarica, C. 2008 Effects of high oil viscosity on oil/gas flow behavior in horizontal pipes. SPE Projects, Facilities and Construction 3 (2), 111.Google Scholar
Hanratty, T. J. & Engen, J. M. 1957 Interaction between a turbulent air stream and a moving water surface. AIChE J. 3 (3), 299304.Google Scholar
Höhne, T. & Mehlhoop, J. P. 2014 Validation of closure models for interfacial drag and turbulence in numerical simulations of horizontal stratified gas–liquid flows. Intl J. Multiphase Flow 62, 116.Google Scholar
Hunt, J. A. 1973 Interaction between polyuridylic acid and rabbit globin messenger ribonucleic acid. Biochem. J. 131 (2), 327333.Google Scholar
Hwang, S. H. & Chang, H. C. 1987 Turbulent and inertial roll waves in inclined film flow. Phys. Fluids 30 (5), 12591268.Google Scholar
Issa, R. I. & Kempf, M. H. W. 2003 Simulation of slug flow in horizontal and nearly horizontal pipes with the two-fluid model. Intl J. Multiphase Flow 29 (1), 6995.Google Scholar
Jeffreys, H. 1925 On the formation of water waves by wind. Proc. R. Soc. Lond. A 107 (742), 189206.Google Scholar
Jepson, W. P. 1990 The flow of slugs in horizontal, two-phase pipelines. Urbana 51, 61801.Google Scholar
Jurman, L. A., Bruno, K. & McCready, M. J. 1989 Periodic and solitary waves on thin, horizontal, gas-sheared liquid films. Intl J. Multiphase Flow 15 (3), 371384.Google Scholar
Jurman, L. A., Deutsch, S. E. & McCready, M. J. 1992 Interfacial mode interactions in horizontal gas–liquid flows. J. Fluid Mech. 238, 187219.Google Scholar
Jurman, L. A. & McCready, M. J. 1989 Study of waves on thin liquid films sheared by turbulent gas flows. Phys. Fluids A 1 (3), 522536.Google Scholar
Kadri, U., Mudde, R. F., Oliemans, R. V. A., Bonizzi, M. & Andreussi, P. 2009 Prediction of the transition from stratified to slug flow or roll-waves in gas–liquid horizontal pipes. Intl J. Multiphase Flow 35 (11), 10011010.Google Scholar
Kranenburg, C. 1992 On the evolution of roll waves. J. Fluid Mech. 245, 249261.Google Scholar
Kuru, W. C., Sangalli, M., Uphold, D. D. & McCready, M. J. 1995 Linear stability of stratified channel flow. Intl J. Multiphase Flow 21 (5), 733753.Google Scholar
Lavalle, G., Vila, J. P., Blanchard, G., Laurent, C. & Charru, F. 2015 A numerical reduced model for thin liquid films sheared by a gas flow. J. Comput. Phys. 301, 119140.Google Scholar
Lin, P. Y. & Hanratty, T. J. 1986 Prediction of the initiation of slugs with linear stability theory. Intl J. Multiphase Flow 12 (1), 7998.Google Scholar
Lin, P. Y. & Hanratty, T. J. 1987 Effect of pipe diameter on flow patterns for air–water flow in horizontal pipes. Intl J. Multiphase Flow 13 (4), 549563.Google Scholar
Liu, J. & Gollub, J. P. 1994 Solitary wave dynamics of film flows. Phys. Fluids 6 (5), 17021712.Google Scholar
Liu, S., Kermani, A., Shen, L. & Yue, D. K. P. 2009 Investigation of coupled air–water turbulent boundary layers using direct numerical simulations. Phys. Fluids 21 (6), 062108.Google Scholar
Maertens, A. P. & Weymouth, G. D. 2015 Accurate Cartesian-grid simulations of near-body flows at intermediate Reynolds numbers. Comput. Meth. Appl. Mech. Engng 283, 106129.Google Scholar
Marquez, J. G. & Trujillo, J. N. 2010 Overview: slug-flow characterization for heavy-oil fields. In SPE Latin American and Caribbean Petroleum Engineering Conference, Society of Petroleum Engineers.Google Scholar
Mata, C., Pereyra, E., Trallero, J. L. & Joseph, D. D. 2002 Stability of stratified gas–liquid flows. Intl J. Multiphase Flow 28 (8), 12491268.Google Scholar
Miao, S., Hendrickson, K. & Liu, Y. 2017 Computation of three-dimensional multiphase flow dynamics by fully-coupled immersed flow (FCIF) solver. J. Comput. Phys. 350, 97116.Google Scholar
Náraigh, L., Spelt, P. D. M., Matar, O. K. & Zaki, T. A. 2011a Interfacial instability in turbulent flow over a liquid film in a channel. Intl J. Multiphase Flow 37 (7), 812830.Google Scholar
Náraigh, L., Spelt, P. D. M. & Zaki, T. A. 2011b Turbulent flow over a liquid layer revisited: multi-equation turbulence modelling. J. Fluid Mech. 683, 357394.Google Scholar
Needham, D. J. & Merkin, J. H. 1984 On roll waves down an open inclined channel. Proc. R. Soc. Lond. A 394, 259278.Google Scholar
Phillips, O. M. 1960 On the dynamics of unsteady gravity waves of finite amplitude. Part 1. The elementary interactions. J. Fluid Mech. 9 (2), 193217.Google Scholar
Prokopiou, T., Cheng, M. & Chang, H. C. 1991 Long waves on inclined films at high Reynolds number. J. Fluid Mech. 222, 665691.Google Scholar
Shkadov, V. K. 1967 Wave flow regimes of a thin layer of viscous fluid subject to gravity. Fluid Dyn. 2 (1), 2934.Google Scholar
Spedding, P. L. & Hand, N. P. 1997 Prediction in stratified gas–liquid co-current flow in horizontal pipelines. Intl J. Heat Mass Transfer 40 (8), 19231935.Google Scholar
Taitel, Y. & Dukler, A. E. 1976 A model for predicting flow regime transitions in horizontal and near horizontal gas–liquid flow. AIChE J. 22 (1), 4755.Google Scholar
Tobak, M. & Peake, D. J. 1982 Topology of three-dimensional separated flows. Annu. Rev. Fluid Mech. 14 (1), 6185.Google Scholar
Townsend, A. A. 1961 Equilibrium layers and wall turbulence. J. Fluid Mech. 11 (1), 97120.Google Scholar
Valluri, P., Náraigh, L., Ding, H. & Spelt, P. D. M. 2010 Linear and nonlinear spatio-temporal instability in laminar two-layer flows. J. Fluid Mech. 656, 458480.Google Scholar
Valluri, P., Spelt, P. D. M., Lawrence, C. J. & Hewitt, G. F. 2008 Numerical simulation of the onset of slug initiation in laminar horizontal channel flow. Intl J. Multiphase Flow 34 (2), 206225.Google Scholar
Wilcox, D. C. 1988 Reassessment of the scale-determining equation for advanced turbulence models. AIAA J. 26 (11), 12991310.Google Scholar
Woods, B. D. & Hanratty, T. J. 1999 Influence of Froude number on physical processes determining frequency of slugging in horizontal gas–liquid flows. Intl J. Multiphase Flow 25 (6), 11951223.Google Scholar
Xie, F., Zheng, X., Triantafyllou, M. S., Constantinides, Y., Zheng, Y. & Karniadakis, G. E. 2017 Direct numerical simulations of two-phase flow in an inclined pipe. J. Fluid Mech. 825, 189207.Google Scholar
Yang, D. & Shen, L. 2011 Simulation of viscous flows with undulatory boundaries. Part 2. Coupling with other solvers for two-fluid computations. J. Comput. Phys. 230 (14), 55105531.Google Scholar
Yiantsios, S. G. & Higgins, B. G. 1988 Linear stability of plane Poiseuille flow of two superposed fluids. Phys. Fluids 31 (11), 3225.Google Scholar
Zhao, Y., Yeung, H., Zorgani, E. E., Archibong, A. E. & Lao, L. 2013 High viscosity effects on characteristics of oil and gas two-phase flow in horizontal pipes. Chem. Engng Sci. 95, 343352.Google Scholar