Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-09T22:19:04.713Z Has data issue: false hasContentIssue false

Slender-body theory for steady sheared plumes in very viscous fluid

Published online by Cambridge University Press:  10 October 2008

ROBERT J. WHITTAKER
Affiliation:
Institute Of Theoretical Geophysics, Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WA, UK
JOHN R. LISTER
Affiliation:
Institute Of Theoretical Geophysics, Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WA, UK

Abstract

A simple model based on slender-body theory is developed to describe the deflection of a steady plume by shear flow in very viscous fluid of the same viscosity. The key dimensionless parameters measuring the relative strengths of the shear, diffusion and source flux are identified, which allows a number of different dynamical regimes to be distinguished. The predictions of the model show good agreement with many, but not all, observations from previous experimental studies. Possible reasons for the discrepancies are discussed.

Type
Papers
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Albers, M. & Christensen, U. R. 1996 The temperature excess of plumes rising from the core–mantle boundary. Geophys. Res. Lett. 23, 35673570.CrossRefGoogle Scholar
Batchelor, G. K. 1970 Slender-body theory for particles of arbitrary cross-section in Stokes flow. J. Fluid Mech. 44, 419440.CrossRefGoogle Scholar
Cox, R. G. 1970 The motion of long slender bodies in a viscous fluid. Part 1. General theory. J. Fluid Mech. 44, 791810.CrossRefGoogle Scholar
Davaille, A., Girard, F. & Le Bars, M. 2002 How to anchor hot spots in a convecting mantle. Earth Planet. Sci. Lett. 203, 621634.CrossRefGoogle Scholar
Gradshteyn, I. S. & Ryzhik, I. M. 2000 Table of Integrals Series and Products, 6th edn.Academic.Google Scholar
Griffiths, R. W. & Campbell, I. H. 1991 On the dynamics of long-lived plume conduits in the convecting mantle. Earth Planet. Sci. Lett. 103, 214227.CrossRefGoogle Scholar
Hinch, E. J. 1991 Perturbation Methods. Cambridge University Press.CrossRefGoogle Scholar
Jellinek, M. & Manga, M. 2002 The influence of a chemical boundary layer on the fixity, spacing and lifetime of mantle plumes. Nature 418, 760763.CrossRefGoogle ScholarPubMed
Jellinek, M. & Manga, M. 2004 Links between long-lived hot spots, mantle plumes, D″, and plate tectonics. Rev. Geophys. 42, RG3002.CrossRefGoogle Scholar
Keller, J. B. & Rubinow, S. I. 1976 Slender-body theory for slow viscous flow. J. Fluid Mech. 75, 705714.CrossRefGoogle Scholar
Kerr, R. C. & Lister, J. R. 1988 Island arc and mid-ocean ridge volcanism, modelled by diapirism from linear source regions. Earth Planet. Sci. Lett. 88, 143152.CrossRefGoogle Scholar
Kerr, R. C. & Mériaux, C. 2004 Structure and dynamics of sheared mantle plumes. Geochem. Geophys. Geosyst. 5, Q12009.CrossRefGoogle Scholar
Lister, J. R. & Kerr, R. C. 1989 The effect of geometry on the gravitational instability of a buoyant region or viscous fluid. J. Fluid Mech. 202, 577594.CrossRefGoogle Scholar
Loper, D. E. & Stacey, F. D. 1983 The dynamical and thermal structure of deep mantle plumes. Phys. Earth Planet. Inter. 33, 304317.CrossRefGoogle Scholar
Molnar, P. & Atwater, T. 1973 Relative motion of hot spots in the mantle. Nature 246, 288291.CrossRefGoogle Scholar
Molnar, P. & Stock, J. 1987 Relative motions of hotspots in the Pacific, Atlantic and Indian Oceans since late cretaceous time. Nature 327, 587591.CrossRefGoogle Scholar
Morgan, W. J. 1971 Convection plumes in the lower mantle. Nature 230, 4243.CrossRefGoogle Scholar
Morgan, W. J. 1972 Plate motions and deep mantle convection. Mem. Geol. Soc. Am. 132, 722.Google Scholar
Olson, P., Schubert, G. & Anderson, C. 1993 Structure of axisymmetric mantle plumes. J. Geophys. Res. 98 (B4), 68296844.CrossRefGoogle Scholar
Olson, P. & Singer, H. 1985 Creeping plumes. J. Fluid Mech. 158, 511531.CrossRefGoogle Scholar
Pozrikidis, C. 1992 Boundary Integral and Singularity Methods for Linearized Viscous Flow. Cambridge University Press.CrossRefGoogle Scholar
Richards, M. A. & Griffiths, R. W. 1988 Deflection of plumes by mantle shear flow: Experimental results and a simple theory. Geophys. J. 94, 367376.CrossRefGoogle Scholar
Richards, M. A. & Griffiths, R. W. 1989 Thermal entrainment by deflected mantle plumes. Nature 342, 900902.CrossRefGoogle Scholar
Skilbeck, J. N. & Whitehead, J. A. Jr. 1978 Formation of discrete islands in linear island chains. Nature 272, 499501.CrossRefGoogle Scholar
Stacey, F. D. & Loper, D. E. 1983 The thermal boundary-layer interpretation of D″ and its role as a plume source. Phys. Earth Planet. Inter. 33, 4555.CrossRefGoogle Scholar
Steinberger, B. 2000 Plumes in a convecting mantle: Models and observations for individual hotspots. J. Geophys. Res. 105 (B5), 1112711152.CrossRefGoogle Scholar
Steinberger, B. & O'Connell, R. J. 1998 Advection of plumes in mantle flow: Implications for hotspot motion, mantle viscosity and plume distribution. Geophys. J. Intl 132, 412434.CrossRefGoogle Scholar
Turner, J. S. 1973 Buoyancy Effects in Fluids. Cambridge University Press.CrossRefGoogle Scholar
Whitehead, J. A. 1982 Instabilities of fluid conduits in a flowing Earth – are plates lubricated by the asthenosphere? Geophys. J. R. Astron. Soc. 70, 415433.CrossRefGoogle Scholar
Whitehead, J. A. 1988 Fluid models of geological hotspots. Annu. Rev. Fluid Mech. 20, 6187.CrossRefGoogle Scholar
Whittaker, R. J. & Lister, J. R. 2006 a Steady axisymmetric creeping plumes above a planar boundary. Part 1. A point source. J. Fluid Mech. 567, 361378.CrossRefGoogle Scholar
Whittaker, R. J. & Lister, J. R. 2006 b Steady axisymmetric creeping plumes above a planar boundary. Part 2. A distributed source. J. Fluid Mech. 567, 379397.CrossRefGoogle Scholar
Whittaker, R. J. & Lister, J. R. 2008 The self-similar rise of a buoyant thermal in very viscous flow. J. Fluid Mech. 606, 295324.CrossRefGoogle Scholar
Wilson, J. T. 1965 Evidence from ocean islands suggesting movement in the Earth. Phil. Trans. R. Soc. Lond. A 258, 145167.Google Scholar
Yuen, D. A. & Schubert, G. 1976 Mantle plumes: A boundary layer approach for Newtonian and non-Newtonian rheologies. J. Geophys. Res. 81, 24992510.CrossRefGoogle Scholar