Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-09T21:43:34.196Z Has data issue: false hasContentIssue false

Slender-body approximations for electro-phoresis and electro-rotation of polarizable particles

Published online by Cambridge University Press:  01 October 2008

EHUD YARIV*
Affiliation:
Faculty of Mathematics, Technion – Israel Institute of Technology, Technion City 32000, Israel

Abstract

Slender-body asymptotic theory is used to evaluate the translational and rotational electrophoretic velocities of initially uncharged polarizable bodies of revolution. These velocities are obtained as asymptotic expansions in the small particle slenderness. Conducting particles which lack fore–aft symmetry translate parallel to the applied field direction, regardless of their orientation relative to it. Both conducting and dielectric particles tend to align with the field. The translational and rotational velocities of dielectric particles are asymptotically smaller than those of comparable conducting particles.

Type
Papers
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anderson, J. L. 1989 Colloid transport by interfacial forces. Annu. Rev. Fluid Mech. 30, 139165.CrossRefGoogle Scholar
Batchelor, G. K. 1967 An Introduction to Fluid Dynamics. Cambridge University Press.Google Scholar
Bazant, M. Z. & Squires, T. M. 2004 Induced-charge electrokinetic phenomena: Theory and microfluidic applications. Phys. Rev. Lett. 92, 066101.CrossRefGoogle ScholarPubMed
Brenner, H. 1964 The Stokes resistance of an arbitrary particle – IV. Arbitrary fields of flow. Chem. Engng Sci. 19, 703727.CrossRefGoogle Scholar
Cole, J. D. 1968 Perturbation Methods in Applied Mathematics. Waltham, Massachusetts: Blaisdell.Google Scholar
Cox, R. G. 1970 The motion of long slender bodies in a visous fluid. Part 1. General theory. J. Fluid Mech. 44, 791810.CrossRefGoogle Scholar
Gamayunov, N. I., Murtsovkin, V. A. & Dukhin, A. S. 1986 Pair interaction of particles in electric-field 1. Features of hydrodynamic interaction of polarized particles. Colloid J. USSR 48 (2), 197203.Google Scholar
Gangwal, S., Cayre, O., Bazant, M. & Velev, O. 2008 Induced-charge electrophoresis of metallodielectric particles. Phys. Rev. Lett. 100 (5), 58302.CrossRefGoogle ScholarPubMed
Happel, J. & Brenner, H. 1965 Low Reynolds Number Hydrodynamics. Prentice-Hall.Google Scholar
Levich, V. G. 1962 Physicochemical Hydrodynamics. Prentice-Hall.Google Scholar
Rivette, N. J. & Baygents, J. C. 1996 A note on the electrostatic force and torque acting on an isolated body in an electric field. Chem. Engng Sci. 51, 52055211.CrossRefGoogle Scholar
Saintillan, D., Darve, E. & Shaqfeh, E. S. G. 2006 a Hydrodynamic interactions in the induced-charge electrophoresis of colloidal rod dispersions. J. Fluid Mech. 563, 223259.CrossRefGoogle Scholar
Saintillan, D., Shaqfeh, E. S. G. & Darve, E. 2006 b Stabilization of a suspension of sedimenting rods by induced-charge electrophoresis. Phys. Fluids 18, 121701.CrossRefGoogle Scholar
Solomentsev, Y. & Anderson, J. L. 1994 Electrophoresis of slender particles. J. Fluid Mech. 279, 197215.CrossRefGoogle Scholar
Squires, T. M. & Bazant, M. Z. 2004 Induced-charge electro-osmosis. J. Fluid Mech. 509, 217252.CrossRefGoogle Scholar
Squires, T. M. & Bazant, M. Z. 2006 Breaking symmetries in induced-charge electro-osmosis and electrophoresis. J. Fluid Mech. 560, 65101.CrossRefGoogle Scholar
Yariv, E. 2005 Induced-charge electrophoresis of nonspherical particles. Phys. Fluids 17, 051702.CrossRefGoogle Scholar
Yariv, E. 2006 “Force-free” electrophoresis? Phys. Fluids 18, 031702.CrossRefGoogle Scholar
Yariv, E. 2008 Nonlinear electrophoresis of ideally polarizable spherical particles. Europhys. Lett. 82, 54004.CrossRefGoogle Scholar
Yariv, E. & Miloh, T. 2008 Electro-convection about conducing particles. J. Fluid Mech. 595, 163172.CrossRefGoogle Scholar
Yossifon, G., Frankel, I. & Miloh, T. 2007 Symmetry breaking in induced-charge electro-osmosis over polarizable spheroids. Phys. Fluids 19, 068105.CrossRefGoogle Scholar
Zhao, H. & Bau, H. 2007 On the effect of induced electro-osmosis on a cylindrical particle next to a surface. Langmuir 23, 40534063.CrossRefGoogle ScholarPubMed