Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-23T12:45:24.389Z Has data issue: false hasContentIssue false

Size-dependent spontaneous oscillations of Leidenfrost droplets

Published online by Cambridge University Press:  09 September 2020

Dongdong Liu
Affiliation:
Mechanical and Aerospace Engineering School, HP-NTU Digital Manufacturing Corporate Lab, Nanyang Technological University, 50 Nanyang Avenue, 639798Singapore, Republic of Singapore
Tuan Tran*
Affiliation:
Mechanical and Aerospace Engineering School, HP-NTU Digital Manufacturing Corporate Lab, Nanyang Technological University, 50 Nanyang Avenue, 639798Singapore, Republic of Singapore
*
Email address for correspondence: [email protected]

Abstract

A liquid droplet hovering on a hot solid surface is commonly referred to as a Leidenfrost droplet. In this study, we discover that a Leidenfrost droplet spontaneously performs a series of distinct oscillations as it shrinks during the span of its life. The oscillation first starts out erratically, followed by a stage with stable frequencies, and finally turns into periodic bouncing with signatures of a parametric oscillation and occasional resonances. The last bouncing stage exhibits nearly perfect collisions. We showed experimentally and theoretically the enabling effects of each oscillation mode and how the droplet switches between such modes. We finally show that these spontaneous oscillation modes and the conditions for transitioning between modes are universal for all tested combinations of liquids and surfaces.

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Biance, A.-L., Chevy, F., Clanet, C., Lagubeau, G. & Quéré, D. 2006 On the elasticity of an inertial liquid shock. J. Fluid Mech. 554, 4766.CrossRefGoogle Scholar
Biance, A.-L., Clanet, C. & Quéré, D. 2003 Leidenfrost drops. Phys. Fluids 15 (6), 16321637.CrossRefGoogle Scholar
Bird, J. C., Dhiman, R., Kwon, H.-M. & Varanasi, K. K. 2013 Reducing the contact time of a bouncing drop. Nature 503 (7476), 385388.CrossRefGoogle ScholarPubMed
Bouillant, A., Mouterde, T., Bourrianne, P., Lagarde, A., Clanet, C. & Quéré, D. 2018 Leidenfrost wheels. Nat. Phys. 14 (12), 11881192.CrossRefGoogle Scholar
Brunet, P. & Snoeijer, J. H. 2011 Star-drops formed by periodic excitation and on an air cushion – a short review. Eur. Phys. J. Spec. Top. 192 (1), 207226.CrossRefGoogle Scholar
Caswell, T. A. 2014 Dynamics of the vapor layer below a Leidenfrost drop. Phys. Rev. E 90 (1), 013014.CrossRefGoogle Scholar
Celestini, F., Frisch, T., Cohen, A., Raufaste, C., Duchemin, L. & Pomeau, Y. 2014 Two dimensional Leidenfrost droplets in a Hele–Shaw cell. Phys. Fluids 26 (3), 032103.CrossRefGoogle Scholar
Celestini, F., Frisch, T. & Pomeau, Y. 2012 Take off of small Leidenfrost droplets. Phys. Rev. Lett. 109 (3), 034501.CrossRefGoogle ScholarPubMed
Chevy, F., Chepelianskii, A., Quéré, D. & Raphaël, E. 2012 Liquid Hertz contact: softness of weakly deformed drops on non-wetting substrates. Europhys. Lett. 100 (5), 54002.CrossRefGoogle Scholar
Cordeiro, J. & Desai, S. 2016 The Leidenfrost effect at the nanoscale. ASME J. Micro Nano-Manuf. 4 (4), 041001.CrossRefGoogle Scholar
Gilet, T. & Bush, J. W. M. 2009 The fluid trampoline: droplets bouncing on a soap film. J. Fluid Mech. 625, 167203.CrossRefGoogle Scholar
Ibrahim, R. A. 2008 Parametric Random Vibration. Courier Dover Publications.Google Scholar
Landau, L. D. & Lifshitz, E. M. 1976 Theoretical physics. Mechanics, vol. 1. Nauka.Google Scholar
Leidenfrost, J. G. 1966 On the fixation of water in diverse fire. Intl J. Heat Mass Transfer 9 (11), 11531166.CrossRefGoogle Scholar
Li, J., Hou, Y., Liu, Y., Hao, C., Li, M., Chaudhury, M. K., Yao, S. & Wang, Z. 2016 Directional transport of high-temperature Janus droplets mediated by structural topography. Nat. Phys. 12 (6), 606612.CrossRefGoogle Scholar
Linke, H., Alemán, B. J., Melling, L. D., Taormina, M. J., Francis, M. J., Dow-Hygelund, C. C., Narayanan, V., Taylor, R. P. & Stout, A. 2006 Self-propelled Leidenfrost droplets. Phys. Rev. Lett. 96 (15), 154502.CrossRefGoogle ScholarPubMed
Lyu, S., Mathai, V., Wang, Y., Sobac, B., Colinet, P., Lohse, D. & Sun, C. 2019 Final fate of a Leidenfrost droplet: explosion or takeoff. Sci. Adv. 5 (5), eaav8081.CrossRefGoogle ScholarPubMed
Ma, X. & Burton, J. C. 2018 Self-organized oscillations of Leidenfrost drops. J. Fluid Mech. 846, 263291.CrossRefGoogle Scholar
Ma, X., Liétor-Santos, J.-J. & Burton, J. C. 2017 Star-shaped oscillations of Leidenfrost drops. Phys. Rev. Lett. 2 (3), 031602.Google Scholar
Moláček, J. & Bush, J. W. M. 2013 Drops bouncing on a vibrating bath. J. Fluid Mech. 727, 582611.CrossRefGoogle Scholar
Quéré, D. 2013 Leidenfrost dynamics. Annu. Rev. Fluid Mech. 45, 197215.CrossRefGoogle Scholar
Richard, D., Clanet, C. & Quéré, D. 2002 Surface phenomena: contact time of a bouncing drop. Nature 417 (6891), 811.CrossRefGoogle Scholar
Richard, D. & Quéré, D. 2000 Bouncing water drops. Eur. Phys. Lett. 50 (6), 769.CrossRefGoogle Scholar
Schutzius, T. M., Jung, S., Maitra, T., Graeber, G., Köhme, M. & Poulikakos, D. 2015 Spontaneous droplet trampolining on rigid superhydrophobic surfaces. Nature 527 (7576), 8285.CrossRefGoogle ScholarPubMed
Vakarelski, I. U., Berry, J. D., Chan, D. Y. C. & Thoroddsen, S. T. 2016 Leidenfrost vapor layers reduce drag without the crisis in high viscosity liquids. Phys. Rev. Lett. 117 (11), 114503.CrossRefGoogle ScholarPubMed

Liu and Tran supplementary movie 1

A water droplet on a at sapphire surface (T = 300°C) transitions from hovering, to bobbing, and finally bouncing.

Download Liu and Tran supplementary movie 1(Video)
Video 13.3 MB

Liu and Tran supplementary movie 2

A water droplet with radius around capillary length hovering on an aluminium surface at T = 380°C. The movie is corresponding to the snapshots shown in Fig. 1b in main text.

Download Liu and Tran supplementary movie 2(Video)
Video 3.8 MB

Liu and Tran supplementary movie 3

A water droplet showing the bobbing motion, i.e., regular deformation without bouncing motion, on an aluminium surface at T = 380°C. The movie is corresponding to the snapshots shown in Fig. 1c in main text.

Download Liu and Tran supplementary movie 3(Video)
Video 4.3 MB

Liu and Tran supplementary movie 4

A water droplet bouncing on an aluminium surface at T = 380°C. The movie is corresponding to the snapshots shown in Fig. 1d in main text.

Download Liu and Tran supplementary movie 4(Video)
Video 289 KB

Liu and Tran supplementary movie 5

A water droplet bouncing on an aluminium surface at T = 380°C. The movie is corresponding to the snapshots shown in Fig. 1d in main text.

Download Liu and Tran supplementary movie 5(Video)
Video 1 MB