Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-09T21:50:24.283Z Has data issue: false hasContentIssue false

A singular perturbation model of fluid dynamics in the vestibular semicircular canal and ampulla

Published online by Cambridge University Press:  26 April 2006

E. R. Damiano
Affiliation:
Department of Bioengineering, University of Utah, Salt Lake City, UT 84112, USA Current address: Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA.
R. D. Rabbitt
Affiliation:
Department of Bioengineering, University of Utah, Salt Lake City, UT 84112, USA

Abstract

A matched asymptotic analysis is presented that describes the mechanical response of the vestibular semicircular canals to rotation of the head and includes the fluid–structure interaction which takes place within the enlarged ampullary region of the duct. New theoretical results detail the velocity field in a fluid boundary layer surrounding the cupula. The governing equations were linearized for small perturbations in fluid displacement from the prescribed motion of the head and reduced asymptotically by exploiting the slender geometry of the duct. The results include the pressure drop around the three-dimensional endolymphatic duct and through the transitional boundary layers within the ampulla. Results implicitly include the deflected shape of the cupular partition and provide an expression for the dynamic boundary condition acting on the two surfaces of the cupula. In this sense, the analysis reduces the three-dimensional fluid dynamics of the endolymph to a relatively simple boundary condition acting on the surfaces of the cupula. For illustrative purposes we present specific results modelling the cupula as a simple viscoelastic membrane. New results show that the multi-dimensional fluid dynamics within the enlarged ampulla has a significant influence on the pointwise deflection of the cupula near the crista. The spatially averaged displacement of the cupula is shown to agree with previous macromechanical descriptions of endolymph flow and pressure that ignore the fluid–structure interaction at the cupula. As an example, the model is applied to the geometry of the horizontal semicircular canal of the toadfish, Opsanus tau, and results for the deflection of the cupula are compared to individual semicircular canal afferent responses previously reported by Boyle & Highstein (1990). The cupular-shear-angle gain, defined by the angular slope of the cupula at the crista divided by the angular velocity of the head, is relatively constant at frequencies from 0.01 Hz up to 1 Hz. Over this same range, the phase of the cupular shear angle aligns with the angular velocity of the head. Near 10 Hz, the shear-angle gain increases slightly and the phase shows a lead of as much a 30°. Results are sensitive to the cupular stiffness and viscosity. Comparing results to the afferent responses represented within the VIIIth nerve provides additional theoretical evidence that the macromechanical displacement of the cupula accounts for the behaviour of only a subset of afferent fibres.

Type
Research Article
Copyright
© 1996 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Assad, J. A. & Corey, D. P. 1992 An active motor model for adaptation by vertebrate hair cells. J. Neurosci. 12, 32913309.Google Scholar
Blanks, R. H. I., Estes, M. S. & Markham, C. H. 1975 Physiologic characteristics of vestibular first-order canal neurons in the cat. II. J. Neurophysiol. 38, 12501268.Google Scholar
Boyle, R., Carey, J. P. & Highstein, S. M. 1991 Morphological correlates of response dynamics and efferent stimulation in horizontal semicircular canal afferents of the toadfish, Opsanus tau. J. Neurophysiol. 66, 15041521.Google Scholar
Boyle, R. & Highstein, S. M. 1990 Resting discharge and response dynamics of horizontal semicircular canal afferents of the toadfish, Opsanus tau. J. Neurosci. 10, 15571569.Google Scholar
Corey, D. P. & Hudspeth, A. J. 1979 Ionic basis of the receptor potential in a vertebrate hair cell. Nature 281, 675677.Google Scholar
Corey, D. P. & Hudspeth, A. J. 1983 Kinetics of the receptor current in bullfrog saccular hair cells. J. Neurosci. 3, 962976.Google Scholar
Crum-Brown, A. 1874 On the sense of rotation and the anatomy and physiology of the semicircular canals of the inner ear. J. Anat. Physiol. 8, 327331.Google Scholar
Curthoys, I. S. & Oman, C. M. 1987 Dimensions of the horizontal semicircular duct, ampulla and utricle in the human. Acta Otolaryngol. (Stockh.) 103, 254261.Google Scholar
Damiano, E. R. 1993 Continuum models of rotational and caloric stimulation of the vestibular semicircular canal. PhD thesis, Rensselaer Polytechnic Institute, Troy, NY.
Eatock, R. A., Corey, D. P. & Hudspeth, A. J. 1987 Adaptation of mechano-electrical transduction in hair cells of the Bullfrog's sacculus. J. Neurosci. 7, 28212836.Google Scholar
Evans, E. & Dembo, M. 1990 Physical model for phagocyte motility: Local growth of a contractile network from a passive body. In Biomechanics of Active Movement and Deformation of Cells (ed. N. Akkas), NATO ASI Series, vol. H42, pp. 185214. Springer.
Ewald, J. R. 1887 Zur physiologie der bogengänge. Pflügers Arch. Ges. Physiol. 41, 463483.Google Scholar
Fernández, C. & Goldberg, J. M. 1971 Physiology of peripheral neurons innervating semicircular canals of the squirrel monkey. II Response to sinusoidal stimulation and dynamics of peripheral vestibular system. J. Neurophysiol. 34, 661675.CrossRefGoogle Scholar
Fettiplace, R., Crawford, A. C. & Evans, M. G. 1992 The hair cell's mechanoelectrical transducer channel. Ann. NY Acad. Sci. 656, 111.Google Scholar
Goldberg, J. M. & Fernández, C. 1971 Physiology of peripheral neurons innervating semicircular canals of the squirrel monkey. III Variations among units in their discharge properties. J. Neurophysiol. 34, 676684.Google Scholar
Goldberg, J. M., Lysakowski, A. & Fernández, C. 1992 Structure and function of vestibular nerve fibers in the chinchilla and squirrel monkey. Ann. NY Acad. Sci. 656, 92110.Google Scholar
Groen, J. J. 1949 Medische Physica; de Evenwichtszintuigen, pp. 510561. Amsterdam: NH Uitgeversmij.
Groen, J. J. 1957 The mechanics of the semicircular canals. J. Physiol. Lond. 110, 117.Google Scholar
Guyton, A. C. 1986 Textbook of Medical Physiology. W. B. Saunders Company, Philadelphia, PA.
Hartmann, R. & Klinke, R. 1980 Discharge properties of afferent fibers of the goldfish semicircular canal with high frequency stimulation. Pflügers Arch. 388, 111121.Google Scholar
Highstein, S. M., Rabbitt, R. D. & Boyle, R. 1995 Determinants of semicircular canal response dynamics in the toadfish, Opsanus tau. J. Neurophysiol. (in press).Google Scholar
Hillman, D. E. 1974 Cupular structure and its receptor relationship. Brain Behav. Evol. 10, 5268.Google Scholar
Honrubia, V., Hoffman, L. F., Sitko, S. & Schwartz, I. R. 1989 Anatomic and physiologic correlates in bullfrog vestibular nerve. J. Neurophysiol. 61, 688701.Google Scholar
Hudspeth, A. J. 1983 Mechanoelectrical transduction by hair cells in the acousticolateralis sensory system. Ann. Rev. Neurosci. 6, 187215.Google Scholar
Hudspeth, A. J. & Jacobs, R. 1979 Stereocilia mediate transduction in vertebrate hair cells. Proc. Natl Acad. Sci. USA 76, 15061509.Google Scholar
Igarashi, M. 1966 Dimensional study of the vestibular end organ apparatus. Second Symp. on the Role of Vestibular Organs in Space Exploration. NASA SP-115, pp. 4754.
Kevorkian, J. & Cole, J. D. 1981 Perturbation Methods in Applied Mathematics. Springer.
Landolt, J. P. & Correia, M. J. 1980 Neurodynamic response analysis of anterior semicircular canal afferents in the pigeon. J. Neurophysiol. 43, 17461770.Google Scholar
Lutz, R. J., Litt, M. & Chakrin, L. W. 1973 Physical-chemical factors in mucus rheology. In J. Rheology of Biological Systems (ed. H. L. Gabelnick & M. Litt), pp. 119157. Charles C. Thomas, Springfield, IL.
Mach, E. 1875 Grundlinien der Lehre von den Bewegungsempfindungen. Leipzig: Wilhelm Engelman.
McLaren, J. W. & Hillman, D. E. 1979 Displacement of the semicircular cupula during sinusoidal rotation. Neuroscience 4, 20012008.Google Scholar
Oman, C. M., Marcus, E. N. & Curthoys, I. S. 1987 The influence of semicircular canal morphology on endolymph flow dynamics. Acta. Otolaryngol. (Stockh.) 103, 113.Google Scholar
Pedley, T. J., Schroter, R. C. & Sudlow, M. F. 1971 Flow and pressure drop in systems of repeatedly branching tubes. J. Fluid Mech. 46, 365383.Google Scholar
Rabbitt, R. D., Boyle, R. & Highstein, S. M. 1994 Sensory transduction of head velocity and acceleration in the toadfish horizontal semicircular canal. J. Neurophysiol. 72, 10411048.Google Scholar
Rabbitt, R. D., Boyle, R. & Highstein, S. M. 1995a Mechanical indentation of the vestibular labyrinth and the relationship to head rotation in the toadfish, Opsanus tau. J. Neurophysiol. 73, 22372260.Google Scholar
Rabbitt, R. D., Boyle, R. & Highstein, S. M. 1995b Simultaneous measurement of horizontal semicircular canal endolymph pressure and neural response in the toadfish, Opsanus tau. Assoc. Res. Otolaryngol. Feb. 7, St. Petersburg, FL. Rabbitt R. D. & Damiano E. R. 1992 A hydroelastic model of macromechanics in the endolymphatic vestibular canal. J. Fluid Mech. 238, 337369.Google Scholar
Reddy, J. N. 1984 Energy and Variational Methods in Applied Mechanics. John Wiley & Sons.
Rüsch, A. & Thurm, U. 1990 Spontaneous electrically induced movements of ampullary kinocilia and stereovilli. Hearing Res. 48, 247264.Google Scholar
Schmid-Schünbein, G. W., Sung, K. L. P., Tüzeren, H., Chien, S. & Skalak, R. 1981 Passive mechanical properties of human leukocytes. Biophys. J. 36, 243256.Google Scholar
Segalünbein, B. N. & Outerbridge, J. S. 1982 Vestibular (semicircular canal) primary neurons in the bullfrog: nonlinearity of individual and population response to rotation. J. Neurophysiol. 47, 545562.Google Scholar
Steer, R. W., Li, Y. T., Young, L. R. & Meiry, J. L. 1967 Physical properties of the labyrinthine fluids and quantification of the phenomenon of caloric stimulation. Third Symp. on the Role of Vestibular Organs in Space Exploration. NASA SP-152, pp. 409420.
Steinhausen, W. 1933 Über die beobachtungen der cupula in den bognegängsampullen des labyrinthes des libenden hecths. Pflügers Arch. Ges. Physiol. 232, 500512.Google Scholar
Sutera, S. P., Mueller, E. R. & Zahalak, G. I. 1990 Extensional recovery of an intact erythrocyte from a tank-treading motion. ASME J. Biomech. Engng 112, 250256.Google Scholar
Van Buskirk, W. C. 1987 Vestibular mechanics. In Handbook of Bioengineering (ed. R. Skalak & S. Chien), pp. 31.131.17. McGraw Hill.
Van Buskirk, W. C. & Grant, J. W. 1973 Biomechanics of the semicircular canals. Biomechanics Symp. ASME, NY, pp. 5354.
Van Buskirk, W. C., Watts, R. G. & Liu, Y. K. 1976 The fluid mechanics of the semicircular canals. J. Fluid Mech. 78, 8798.Google Scholar
Van Dyke, M. 1975 Perturbation Methods in Fluid Mechanics. The Parabolic Press.
Wersäll, J. & Bagger-Sjöbäck, G. M. 1974 Morphology of the vestibular sense organ. In Handbook of Sensory Physiology V6(1), Vestibular System Part I: Basic Mechanisms (ed. H. H. Kornhuber), pp. 123170. Springer.
Womersley, J. R. 1955 Method for the calculation of velocity, rate of flow, and viscous drag in arteries when the pressure gradient is known. J. Physiol. 127, 553563.Google Scholar
Womersley, J. R. 1958 Oscillatory flow in arteries I. The constrained elastic tube as a model of arterial flow and pulse transmission. Phys. Med. Biol. 2, 177187.Google Scholar