Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-09T22:20:06.382Z Has data issue: false hasContentIssue false

A simple model for low-frequency unsteadiness in shock-induced separation

Published online by Cambridge University Press:  15 June 2009

S. PIPONNIAU
Affiliation:
Institut Universitaire des Systèmes Thermiques IndustrielsUniversité de Provence and UMR CNRS 6595, Marseille 13013, France
J. P. DUSSAUGE
Affiliation:
Institut Universitaire des Systèmes Thermiques IndustrielsUniversité de Provence and UMR CNRS 6595, Marseille 13013, France
J. F. DEBIÈVE
Affiliation:
Institut Universitaire des Systèmes Thermiques IndustrielsUniversité de Provence and UMR CNRS 6595, Marseille 13013, France
P. DUPONT*
Affiliation:
Institut Universitaire des Systèmes Thermiques IndustrielsUniversité de Provence and UMR CNRS 6595, Marseille 13013, France
*
Email address for correspondence: [email protected]

Abstract

A model to explain the low-frequency unsteadiness found in shock-induced separation is proposed for cases in which the flow is reattaching downstream. It is based on the properties of fluid entrainment in the mixing layer generated downstream of the separation shock whose low-frequency motions are related to successive contractions and dilatations of the separated bubble. The main aerodynamic parameters on which the process depends are presented. This model is consistent with experimental observations obtained by particle image velocimetry (PIV) in a Mach 2.3 oblique shock wave/turbulent boundary layer interaction, as well as with several different configurations reported in the literature for Mach numbers ranging from 0 to 5.

Type
Papers
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adrian, R. J., Meinhart, C. D. S. & Tomkins, C. D. 2000 Vortex organization in the outer region of the turbulent boundary layer. J. Fluid Mech. 422, 153.CrossRefGoogle Scholar
Beresh, S. J., Clemens, N. T. & Dolling, D. S. 2002 Relationship between upstream turbulent boundary layer velocity fluctuations and separation shock unsteadiness. Relationship between upstream turbulent boundary layer velocity fluctuations and separation shock unsteadiness 40 (12), 24122422.Google Scholar
Browand, F. K. & Troutt, T. R. 1985 The turbulent mixing layer: geometry of large vortices. J. Fluid Mech. 158, 489509.CrossRefGoogle Scholar
Brown, G. L. & Roshko, A. 1974 On density effects and large structures in turbulent mixing layers. J. Fluid Mech. 64, 775781.CrossRefGoogle Scholar
Cherry, N. J., Hillier, R. & Latour, M. E. M. 1984 Unsteady measurements in a separated and reattaching flow. J. Fluid Mech. 144, 1346.CrossRefGoogle Scholar
Dandois, J., Garnier, E. & Sagaut, P. 2007 Numerical simulation of active separation control by synthetic jet. J. Fluid. Mech. 574, 2558.CrossRefGoogle Scholar
Debiève, J. F. & Dupont, P. 2007 Dependence between shock and separation bubble in a shock wave/boundary layer interaction. In IUTAM Symp. on Unsteady Separated Flows and Their Control, Corfu, Greece.Google Scholar
Debiève, J. F. & Lacharme, J. P. 1985 A shock wave/free turbulence interaction. In IUTAM Symp. on Turbulent Shear-Layer/Shock-Wave Interaction, Palaiseau, France.Google Scholar
Delery, J. & Marvin, J. G. 1986 Shock wave–boundary layer interactions. Tech Rep. NATO. AGARDOgraph n° 280.Google Scholar
Dolling, D. S. 2001 Fifty years of shock-wave/boundary-layer interaction research: what next? AIAA J. 39 (8), 15171531.CrossRefGoogle Scholar
Dolling, D. S. & Brusniak, L. 1989 Separation shock motion in fin, cylinder, and compression ramp-induced turbulent interactions. Separation shock motion in fin, cylinder, and compression ramp-induced turbulent interactions 27 (6), 734742.Google Scholar
Dupont, P., Haddad, C., Ardissone, J. P. & Debiève, J. F. 2005 Space and time organisation of a shock wave/turbulent boundary layer interaction. Space and time organisation of a shock wave/turbulent boundary layer interaction 9 (7), 561572.Google Scholar
Dupont, P., Haddad, C. & Debiève, J. F. 2006 Space and time organization in a shock induced boundary layer. J. Fluid Mech. 559, 255277.CrossRefGoogle Scholar
Dupont, P., Piponniau, S., Sidorenko, A. & Debiève, J. F. 2008 Investigation of an oblique shock reflection with separation by PIV measurements. Investigation of an oblique shock reflection with separation by PIV measurements 46 (6).Google Scholar
Dussauge, J. P., Dupont, P. & Debiève, J. F. 2006 Unsteadiness in shock wave boundary layer interaction with separation. Aeros. Sci. Technol. 10, 8591.CrossRefGoogle Scholar
Elena, M., Tedeschi, G. & Gouin, H. 1999 Motion of tracer particles in supersonic flows. Motion of tracer particles in supersonic flows 26 (4), 288296.Google Scholar
Erengil, M. E. & Dolling, D. S. 1991 a Correlation of separation shock motion with pressure fluctuations in the incoming boundary layer. AIAA J. 29 (11), 18681877.CrossRefGoogle Scholar
Erengil, M. E. & Dolling, D. S. 1991 b Unsteady wave structure near separation in a Mach 5 compression ramp interaction. AIAA J. 29 (5), 728735.CrossRefGoogle Scholar
Ganapathisubramani, B., Clemens, N. T. & Dolling, D. S. 2006 Large-scale motions in a supersonic turbulent boundary layer. J. Fluid Mech. 556, 271282.CrossRefGoogle Scholar
Ganapathisubramani, B., Clemens, N. T. & Dolling, D. S. 2007 a Effects of upstream boundary layer on the unsteadiness of shock-induced separation. J. Fluid Mech. 585, 369394.CrossRefGoogle Scholar
Ganapathisubramani, B., Clemens, N. T. & Dolling, D. S. 2007 b Effects of upstream coherent structures on low-frquency motion of shock-induced turbulent separation. In 45th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada.Google Scholar
Garnier, E. & Sagaut, P. 2002 Large eddy simulation of shock/boundary layer interaction. Large eddy simulation of shock/boundary layer interaction 40 (10), 19351944.Google Scholar
Humble, R. A., Elsinga, G. E., Scarano, F. & Van Oudheusden, B. W. 2007 Investigation of the instantaneous 3D flow organization of a shock-wave/turbulent boundary layer interaction using tomographic PIV. Paper 2007-4112. AIAA.CrossRefGoogle Scholar
Kim, K. C. & Adrian, R. J. 1999 Very large-scale motion in the outer layer. Phys. Fluids 11, 417422.CrossRefGoogle Scholar
Kiya, M. & Sasaki, K. 1983 Structure of a turbulent separation bubble. J. Fluid Mech. 137, 83113.CrossRefGoogle Scholar
De Martel, E., Garnier, E. & Sagaut, P. 2007 Large eddy simulation of impinging shock wave/turbulent boundary layer interaction at M = 2.3. In IUTAM Symp. on Unsteady Separated Flows and their Control, Corfu, Greece.Google Scholar
Papamoschou, D. & Roshko, A. 1988 The compressible turbulent shear layer: an experimental study. J. Fluid Mech. 197, 453477.CrossRefGoogle Scholar
Pirozzoli, S. & Grasso, F. 2006 Direct numerical simulation of impinging shock wave/turbulent boundary layer interaction at M = 2.25. Phys. Fluids 18, 065113. 117.CrossRefGoogle Scholar
Ringuette, M. J. & Smits, A. J. 2007 Wall-pressure measurements in a Mach 3 shock-wave turbulent boundary layer interaction at a DNS-accessible Reynolds number. In 37th AIAA Fluid Dynamics Conf. and Exhibit, Miami, Florida.Google Scholar
Ringuette, M. J., Wu, M. & Martin, M. P. 2008 Coherent structures in direct numerical simulation of turbulent boundary layers at Mach 3. J. Fluid Mech. 594, 5969.CrossRefGoogle Scholar
Samimy, M. & Lele, S. K. 1991 Motion of particles with inertia in a compressible free shear layer. Phys. Fluids A 3, 19151923.CrossRefGoogle Scholar
Simpson, R. L. 1989 Turbulent boundary-layer separation. Annu. Rev. Fluid Mech. 21, 205234.CrossRefGoogle Scholar
Smits, A. J. & Dussauge, J. P. 2006 Turbulent Shear Layers in Supersonic Flow, 2nd edn. AIP Press.Google Scholar
Souverein, L., Van Oudheusden, B. W., Scarano, F. & Dupont, P. 2008 Unsteadiness characterisation in a shock wave turbulent boundary layer interaction through dual-PIV. In 38th Fluid Dynamics Conf. and Exhibit, Seattle, Washington.Google Scholar
Thomas, F. O., Putman, C. M. & Chu, H. C. 1994 On the mechanism of unsteady shock oscillation in shock wave/turbulent boundary layer interaction. Exp. Fluids 18, 6981.CrossRefGoogle Scholar
Touber, E. & Sandham, N. D. 2008 Oblique shock impinging on a turbulent boundary layer: low-frequency mechanisms. In 38th AIAA Fluid Dynamics Conf., Seattle, Washington.Google Scholar
Wu, M. & Martin, M. P. 2007 Direct numerical simulation of supersonic turbulent boundary layer over a compression ramp. Direct numerical simulation of supersonic turbulent boundary layer over a compression ramp 45 (4), 879889.Google Scholar
Wu, M. & Martin, M. P. 2008 Analysis of shock motion in shock wave and turbulent boundary layer interaction using direct numerical simulation data. J. Fluid Mech. 594, 7183.CrossRefGoogle Scholar
Wu, M. & Miles, R. B. 2001 Megahertz visualization of compression-corner shock structures. Megahertz visualization of compression-corner shock structures 39 (8), 15421546.Google Scholar