Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-09T21:52:08.501Z Has data issue: false hasContentIssue false

Similarity and asymptotic analysis for gun-firing aerodynamics

Published online by Cambridge University Press:  26 April 2006

A. Merlen
Affiliation:
ONERA-IMFL, 5 Boulevard Painlevé, 59000 Lille, France
A. Dyment
Affiliation:
ONERA-IMFL, 5 Boulevard Painlevé, 59000 Lille, France

Abstract

An experimental observation of the flow following the discharge of firearms has been carried out by means of ultra-high-speed visualization. The theory of similarity has been applied in order to define the rules governing the tests on models, chiefly for gun firing-air intake interference problems. When the blast effect predominates, no geometric similarity is required between the simulation gun and the simulated one, so the model and the simulation gun can have different scales. It is shown that the main parameter characterizing the blast effect is the energy rate at the muzzle which can be considered as a point source of energy caused by a very hot gas. So, the muzzle wave tends asymptotically toward the blast wave of a non-instantaneous intense point explosion. Specific experiments confirm this assertion. All previous results allow a theoretical modelling of gun-firing aerodynamic phenomena which will be presented in a separate paper.

Type
Research Article
Copyright
© 1991 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barenblatt, G. I.: 1979 Similarity, self-similarity and intermediate asymptotics. Consultants bureau. New York and London.
Dyment, A. & Merlen, A., 1981 Gun firing similarity for aircraft interference problems. J. Aircraft 18 (5), 415416.Google Scholar
Eichhorn, A., Werner, U., Mach, H. & Mazur, H., 1984 Mesure des variations de la températureen fonction du temps dans des écoulements de révolution. ISL Rep. no. 132/84.Google Scholar
Freeman, R. A.: 1968 Variable-energy blast waves. Brit. J. Appl. Phys. Ser. 2, 1.Google Scholar
Fuller, P.: 1980 Measurement of bore yaw of projectiles. In 5th Int Symp. of ballistics, Toulouse.
Mach, H.: 1978 Mesure de la tempé rature et de la vitesse des gaz de combustion dans le tube et à la bouche d'une arme. ISL Rep. No. CO206/78.Google Scholar
Mach, H., Klingenberg, G., Werner, U., Mazur, H. & Weiland, O., 1977 Mesure spectroscopique de la température des produits de combustion dans le tube et à la sortie de la bouche d'un canon automatique de 20 mm de calibre. ISL Rep. No. 106/77.Google Scholar
Merlen, A.: 1988 Similitude physique et modélisation par explosion équivalente des phénomènes aérodynamiques de balistique intermédiaire. Thèse de Doctorat d'Etat, Université des Sciences et Techniques de Lille Flandres Artois.
Merlen, A. & Desse, J. M., 1983 Similitude de tir, effet de la phase de formation, influence d'un obstacle. IMFL Rep. 83/64.Google Scholar
Oswatitsch, K.: 1964 Zwischenballistik. Deutsche Luft und Raumfahrt. DVL.
Sakuraï, A.: 1965 Blast Wave Theory. Basic Developments in Fluid Dynamics, vol. 1. Academic.
Schmidt, E., Gion, E. & Fansler, K., 1980 Analysis of weapon parameters controlling the muzzle blast flow field. In 5th Intl Symp. of Ballistics, Toulouse.Google Scholar
Schmidt, E. & Shear, D., 1975 Optical measurements of muzzle blast. AIAA J. 13, 10861091.Google Scholar
Sedov, L. I.: 1945 On certain unsteady compressible fluid motions. Appl. Maths Mech. Leningr. 9 (4), 294.Google Scholar
Sedov, L. I.: 1959 Similarity and Dimensional Methods in Mechanics. Academic.
Tavernier, P.: 1954 Balistique intérieure. Mémorial de I'Artillerie Française, fasc. 3–4, pp. 623866.Google Scholar
Taylor, G. I.: 1950 The formation of a blast wave by a very intense explosion. Proc. R. Soc., Lond. A A201, 159166.Google Scholar