Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-26T15:22:20.515Z Has data issue: false hasContentIssue false

Shock-induced bubble collapse near solid materials: effect of acoustic impedance

Published online by Cambridge University Press:  20 November 2020

S. Cao
Affiliation:
Department of Aerospace and Ocean Engineering, Virginia Tech, Blacksburg, VA24061, USA
G. Wang
Affiliation:
Department of Aerospace and Ocean Engineering, Virginia Tech, Blacksburg, VA24061, USA
O. Coutier-Delgosha
Affiliation:
Department of Aerospace and Ocean Engineering, Virginia Tech, Blacksburg, VA24061, USA
K. Wang*
Affiliation:
Department of Aerospace and Ocean Engineering, Virginia Tech, Blacksburg, VA24061, USA
*
Email address for correspondence: [email protected]

Abstract

The fluid dynamics of a bubble collapsing near an elastic or viscoelastic material is coupled with the mechanical response of the material. We apply a multiphase fluid–solid coupled computational model to simulate the collapse of an air bubble in water induced by an ultrasound shock wave, near different types of materials including metals (e.g. aluminium), polymers (e.g. polyurea), minerals (e.g. gypsum), glass and foams. We characterize the two-way fluid–material interaction by examining the fluid pressure and velocity fields, the time history of bubble shape and volume and the maximum tensile and shear stresses produced in the material. We show that the ratio of the longitudinal acoustic impedance of the material compared to that of the ambient fluid, $Z/Z_0$, plays a significant role. When $Z/Z_0<1$, the material reflects the compressive front of the incident shock into a tensile wave. The reflected tensile wave impinges on the bubble and decelerates its collapse. As a result, the collapse produces a liquid jet, but not necessarily a shock wave. When $Z/Z_0>1$, the reflected wave is compressive and accelerates the bubble's collapse, leading to the emission of a shock wave whose amplitude increases linearly with $\log (Z/Z_0)$, and can be much higher than the amplitude of the incident shock. The reflection of this emitted shock wave impinges on the bubble during its rebound. It reduces the speed of the bubble's rebound and the velocity of the liquid jet. Furthermore, we show that, for a set of materials with $Z/Z_0\in [0.04, 10.8]$, the effect of acoustic impedance on the bubble's collapse time and minimum volume can be captured using phenomenological models constructed based on the solution of Rayleigh–Plesset equation.

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abouel-Kasem, A., El-Deen, A. E., Emara, K. M. & Ahmed, S. M. 2009 Investigation into cavitation erosion pits. J. Tribol. 131 (3), 031605.Google Scholar
Amirkhizi, A. V., Isaacs, J., McGee, J. & Nemat-Nasser, S. 2006 An experimentally-based viscoelastic constitutive model for polyurea, including pressure and temperature effects. Phil. Mag. 86 (36), 58475866.CrossRefGoogle Scholar
Ashby, M. F. 2010 Materials Selection in Mechanical Design. Butterworth-Heinemann.Google Scholar
Blake, J. R. & Gibson, D. C. 1981 Growth and collapse of a vapour cavity near a free surface. J. Fluid Mech. 111, 123140.CrossRefGoogle Scholar
Bouix, R., Viot, P. & Lataillade, J.-L 2009 Polypropylene foam behaviour under dynamic loadings: strain rate, density and microstructure effects. Intl J. Impact Engng 36 (2), 329342.Google Scholar
Brekhovskikh, L. M. & Godin, O. A. 2012 Acoustics of Layered Media I: Plane and Quasi-Plane Waves, vol. 5. Springer Science & Business Media.Google Scholar
Brems, S., Hauptmann, M., Camerotto, E., Pacco, A., Kim, T.-G., Xu, X., Wostyn, K., Mertens, P. & De Gendt, S. 2014 Nanoparticle removal with megasonics: a review. ECS J. Solid State Sci. Technol. 3 (1), N3010N3015.CrossRefGoogle Scholar
Brennen, C. E. 2014 Cavitation and Bubble Dynamics. Cambridge University Press.Google Scholar
Brennen, C. E. 2015 Cavitation in medicine. Interface Focus 5 (5), 20150022.CrossRefGoogle ScholarPubMed
Brujan, E.-A. 2019 Shock wave emission and cavitation bubble dynamics by femtosecond optical breakdown in polymer solutions. Ultrason. Sonochem. 58, 104694.CrossRefGoogle ScholarPubMed
Brujan, E. A., Keen, G. S., Vogel, A. & Blake, J. R. 2002 The final stage of the collapse of a cavitation bubble close to a rigid boundary. Phys. Fluids 14 (1), 8592.CrossRefGoogle Scholar
Brujan, E.-A. & Matsumoto, Y. 2012 Collapse of micrometer-sized cavitation bubbles near a rigid boundary. Microfluid Nanofluid 13 (6), 957966.Google Scholar
Brujan, E.-A., Nahen, K., Schmidt, P. & Vogel, A. 2001 Dynamics of laser-induced cavitation bubbles near elastic boundaries: influence of the elastic modulus. J. Fluid Mech. 433, 283314.CrossRefGoogle Scholar
Calvisi, M. L., Iloreta, J. I. & Szeri, A. J. 2008 Dynamics of bubbles near a rigid surface subjected to a lithotripter shock wave. Part 2. Reflected shock intensifies non-spherical cavitation collapse. J. Fluid Mech. 616, 6397.CrossRefGoogle Scholar
Cao, S., Zhang, Y., Liao, D., Zhong, P. & Wang, K. G. 2019 Shock-induced damage and dynamic fracture in cylindrical bodies submerged in liquid. Intl J. Solids Struct.Google ScholarPubMed
Chahine, G. L. & Hsiao, C.-T. 2015 Modelling cavitation erosion using fluid–material interaction simulations. Interface Focus 5 (5), 20150016.CrossRefGoogle ScholarPubMed
Cheneler, D. 2016 Viscoelasticity of polymers: theory and numerical algorithms. Appl. Rheol. 26 (4), 1052.Google Scholar
Chung, H., Cao, S., Philen, M., Beran, P. S. & Wang, K. G. 2018 CFD-CSD coupled analysis of underwater propulsion using a biomimetic fin-and-joint system. Comput. Fluids 172, 5466.CrossRefGoogle Scholar
Church, C. C. 1989 A theoretical study of cavitation generated by an extracorporeal shock wave lithotripter. J. Acoust. Soc. Am. 86 (1), 215227.Google ScholarPubMed
Coussios, C. C. & Roy, R. A. 2008 Applications of acoustics and cavitation to noninvasive therapy and drug delivery. Annu. Rev. Fluid Mech. 40, 395420.CrossRefGoogle Scholar
Deigan, R. J. 2007 Modeling and experimental investigations of the shock response of viscoelastic foams. PhD thesis, University of Maryland.Google Scholar
Dular, M., Delgosha, O. C. & Petkovšek, M. 2013 Observations of cavitation erosion pit formation. Ultrason. Sonochem. 20 (4), 11131120.CrossRefGoogle ScholarPubMed
Esch, E., Simmons, W. N., Sankin, G., Cocks, H. F., Preminger, G. M. & Zhong, P. 2010 A simple method for fabricating artificial kidney stones of different physical properties. Urol. Res. 38 (4), 315319.Google ScholarPubMed
Farhat, C., Gerbeau, J.-F. & Rallu, A. 2012 Fiver: a finite volume method based on exact two-phase Riemann problems and sparse grids for multi-material flows with large density jumps. J. Comput. Phys. 231 (19), 63606379.CrossRefGoogle Scholar
Farhat, C., Rallu, A. & Shankaran, S. 2008 A higher-order generalized ghost fluid method for the poor for the three-dimensional two-phase flow computation of underwater implosions. J. Comput. Phys. 227 (16), 76747700.CrossRefGoogle Scholar
Farhat, C., Rallu, A., Wang, K. & Belytschko, T. 2010 Robust and provably second-order explicit–explicit and implicit–explicit staggered time-integrators for highly non-linear compressible fluid–structure interaction problems. Intl J. Numer. Meth. Engng 84 (1), 73107.Google Scholar
Farhat, C., Wang, K. G., Main, A., Kyriakides, S., Lee, L-H., Ravi-Chandar, K. & Belytschko, T. 2013 Dynamic implosion of underwater cylindrical shells: experiments and computations. Intl J. Solids Struct. 50 (19), 29432961.Google Scholar
Folds, D. L. 1974 Speed of sound and transmission loss in silicone rubbers at ultrasonic frequencies. J. Acoust. Soc. Am. 56 (4), 12951296.CrossRefGoogle Scholar
Fovargue, D. E., Mitran, S., Smith, N. B., Sankin, G. N., Simmons, W. N. & Zhong, P. 2013 Experimentally validated multiphysics computational model of focusing and shock wave formation in an electromagnetic lithotripter. J. Acoust. Soc. Am. 134 (2), 15981609.Google Scholar
Freund, J. B., Shukla, R. K. & Evan, A. P. 2009 Shock-induced bubble jetting into a viscous fluid with application to tissue injury in shock-wave lithotripsy. J. Acoust. Soc. Am. 126 (5), 27462756.CrossRefGoogle ScholarPubMed
Gibson, D. C. & Blake, J. R. 1982 The growth and collapse of bubbles near deformable surfaces. Appl. Sci. Res. 38 (1), 215224.CrossRefGoogle Scholar
Goh, S. M., Charalambides, M. N. & Williams, J. G. 2004 Determination of the constitutive constants of non-linear viscoelastic materials. Mech. Time-Depend. Mat. 8 (3), 255268.CrossRefGoogle Scholar
Guo, S., Khoo, B. C., Teo, S. L. M., Zhong, S., Lim, C. T. & Lee, H. P. 2014 Effect of ultrasound on cyprid footprint and juvenile barnacle adhesion on a fouling release material. Colloids Surf. B 115, 118124.Google ScholarPubMed
de Hoop, A. T. & Van der Hijden, J. H. M. T. 1984 Generation of acoustic waves by an impulsive point source in a fluid/solid configuration with a plane boundary. J. Acoust. Soc. Am. 75 (6), 17091715.CrossRefGoogle Scholar
Huang, D. Z., De Santis, D. & Farhat, C. 2018 A family of position-and orientation-independent embedded boundary methods for viscous flow and fluid-structure interaction problems. J. Comput. Phys. 365, 74104.CrossRefGoogle Scholar
INRIA 2013 Gar6more3d. Available at: http://gar6more3d.gforge.inria.fr/.Google Scholar
Johnsen, E. & Colonius, T. 2008 Shock-induced collapse of a gas bubble in shockwave lithotripsy. J. Acoust. Soc. Am. 124 (4), 20112020.Google ScholarPubMed
Johnsen, E. & Colonius, T. 2009 Numerical simulations of non-spherical bubble collapse. J. Fluid Mech. 629, 231262.CrossRefGoogle ScholarPubMed
Kobayashi, K., Kodama, T. & Takahira, H. 2011 Shock wave–bubble interaction near soft and rigid boundaries during lithotripsy: numerical analysis by the improved ghost fluid method. Phys. Med. Biol. 56 (19), 6421.CrossRefGoogle ScholarPubMed
Koch, M., Lechner, C., Reuter, F., Köhler, K., Mettin, R. & Lauterborn, W. 2016 Numerical modeling of laser generated cavitation bubbles with the finite volume and volume of fluid method, using openfoam. Comput. Fluids 126, 7190.CrossRefGoogle Scholar
Kodama, T. & Takayama, K. 1998 Dynamic behavior of bubbles during extracorporeal shock-wave lithotripsy. Ultrasound Med. Biol. 24 (5), 723738.CrossRefGoogle ScholarPubMed
Kröninger, D., Köhler, K., Kurz, T. & Lauterborn, W. 2010 Particle tracking velocimetry of the flow field around a collapsing cavitation bubble. Exp. Fluids 48 (3), 395408.CrossRefGoogle Scholar
Kudryashova, O. & Vorozhtsov, S. 2016 On the mechanism of ultrasound-driven deagglomeration of nanoparticle agglomerates in aluminum melt. JOM 68 (5), 13071311.CrossRefGoogle Scholar
Li, F., Yang, C., Yuan, F., Liao, D., Li, T., Guilak, F. & Zhong, P. 2018 Dynamics and mechanisms of intracellular calcium waves elicited by tandem bubble-induced jetting flow. Proc. Natl Acad. Sci. 115 (3), E353E362.CrossRefGoogle ScholarPubMed
Maeda, K., Maxwell, A. D., Colonius, T., Kreider, W. & Bailey, M. R. 2018 Energy shielding by cavitation bubble clouds in burst wave lithotripsy. J. Acoust. Soc. Am. 144 (5), 29522961.Google ScholarPubMed
Main, G. A. 2014 Implicit and higher-order discretization methods for compressible multi-phase fluid and fluid-structure problems. PhD thesis, Stanford University.Google Scholar
Main, A., Zeng, X., Avery, P. & Farhat, C. 2017 An enhanced fiver method for multi-material flow problems with second-order convergence rate. J. Comput. Phys. 329, 141172.CrossRefGoogle Scholar
Müller, S., Bachmann, M., Kröninger, D., Kurz, T. & Helluy, P. 2009 Comparison and validation of compressible flow simulations of laser-induced cavitation bubbles. Comput. Fluids 38 (9), 18501862.CrossRefGoogle Scholar
Ohl, C.-D., Arora, M., Ikink, R., De Jong, N., Versluis, M., Delius, M. & Lohse, D. 2006 Sonoporation from jetting cavitation bubbles. Biophys. J. 91 (11), 42854295.CrossRefGoogle ScholarPubMed
Philipp, A. & Lauterborn, W. 1998 Cavitation erosion by single laser-produced bubbles. J. Fluid Mech. 361, 75116.CrossRefGoogle Scholar
Pishchalnikov, Y. A., Sapozhnikov, O. A., Bailey, M. R., Williams, J. C. Jr., Cleveland, R. O., Colonius, T., Crum, L. A., Evan, A. P. & McAteer, J. A. 2003 Cavitation bubble cluster activity in the breakage of kidney stones by lithotripter shockwaves. J. Endourol. 17 (7), 435446.Google ScholarPubMed
Rattray, M. 1951 Perturbation effects in cavitation bubble dynamics. PhD thesis, California Institute of Technology.Google Scholar
Robinson, P. B., Blake, J. R., Kodama, T., Shima, A. & Tomita, Y. 2001 Interaction of cavitation bubbles with a free surface. J. Appl. Phys. 89 (12), 82258237.CrossRefGoogle Scholar
Roe, P. L. 1981 Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comput. Phys. 43 (2), 357372.CrossRefGoogle Scholar
Sankin, G. N. & Zhong, P. 2006 Interaction between shock wave and single inertial bubbles near an elastic boundary. Phys. Rev. E 74 (4), 046304.Google ScholarPubMed
Shaw, S. J., Schiffers, W. P., Gentry, T. P. & Emmony, D. C. 2000 The interaction of a laser-generated cavity with a solid boundary. J. Acoust. Soc. Am. 107 (6), 30653072.CrossRefGoogle ScholarPubMed
Simmons, W. N., Cocks, F. H., Zhong, P. & Preminger, G. 2010 A composite kidney stone phantom with mechanical properties controllable over the range of human kidney stones. J. Mech. Behav. Biomed. Mater. 3 (1), 130133.CrossRefGoogle ScholarPubMed
Tomita, Y. & Shima, A. 1986 Mechanisms of impulsive pressure generation and damage pit formation by bubble collapse. J. Fluid Mech. 169, 535564.Google Scholar
Turangan, C. K., Ball, G. J., Jamaluddin, A. R. & Leighton, T. G. 2017 Numerical studies of cavitation erosion on an elastic–plastic material caused by shock-induced bubble collapse. Proc. R. Soc. A 473 (2205), 20170315.CrossRefGoogle Scholar
Turangan, C. K., Ong, G. P., Klaseboer, E. & Khoo, B. C. 2006 Experimental and numerical study of transient bubble-elastic membrane interaction. J. Appl. Phys. 100 (5), 054910.CrossRefGoogle Scholar
Turner, S. E. 2007 Underwater implosion of glass spheres. J. Acoust. Soc. Am. 121 (2), 844852.CrossRefGoogle ScholarPubMed
Van Leer, B. 1979 Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov's method. J. Comput. Phys. 32 (1), 101136.CrossRefGoogle Scholar
Wang, Q. 2014 Multi-oscillations of a bubble in a compressible liquid near a rigid boundary. J. Fluid Mech. 745, 509536.CrossRefGoogle Scholar
Wang, K. G. 2017 Multiphase fluid-solid coupled analysis of shock-bubble-stone interaction in shockwave lithotripsy. Intl J. Numer. Meth. Biomed. Engng 33 (10), e2855.CrossRefGoogle ScholarPubMed
Wang, K., Grétarsson, J., Main, A. & Farhat, C. 2012 Computational algorithms for tracking dynamic fluid–structure interfaces in embedded boundary methods. Intl J. Numer. Meth. Fluids 70 (4), 515535.CrossRefGoogle Scholar
Wang, K. G., Lea, P. & Farhat, C. 2015 A computational framework for the simulation of high-speed multi-material fluid–structure interaction problems with dynamic fracture. Intl J. Numer. Meth. Engng 104 (7), 585623.Google Scholar
Wang, K. G., Lea, P., Main, A., McGarity, O. & Farhat, C. 2014 Predictive simulation of underwater implosion: coupling multi-material compressible fluids with cracking structures. In ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering, p. V08AT06A028. American Society of Mechanical Engineers.Google Scholar
Wang, K., Rallu, A., Gerbeau, J.-F. & Farhat, C. 2011 Algorithms for interface treatment and load computation in embedded boundary methods for fluid and fluid–structure interaction problems. Intl J. Numer. Meth. Fluids 67 (9), 11751206.CrossRefGoogle Scholar
Xu, H., Zeiger, B. W. & Suslick, K. S. 2013 Sonochemical synthesis of nanomaterials. Chem. Soc. Rev. 42 (7), 25552567.CrossRefGoogle ScholarPubMed
Zhang, S., Duncan, J. H. & Chahine, G. L. 1993 The final stage of the collapse of a cavitation bubble near a rigid wall. J. Fluid Mech. 257, 147181.CrossRefGoogle Scholar
Zhong, P. 2013 Shock wave lithotripsy. In Bubble Dynamics and Shock Waves, pp. 291–338. Springer.Google Scholar
Zhong, P., Zhou, Y. & Zhu, S. 2001 Dynamics of bubble oscillation in constrained media and mechanisms of vessel rupture in SWL. Ultrasound Med. Biol. 27 (1), 119134.CrossRefGoogle ScholarPubMed

Cao et al. supplementay movie 1

Shock-induced bubble collapse near BegoStone - Velocity

Download Cao et al. supplementay movie 1(Video)
Video 14.8 MB

Cao et al. supplementay movie 2

Shock-induced bubble collapse near polyurea - Velocity

Download Cao et al. supplementay movie 2(Video)
Video 13 MB

Cao et al. supplementay movie 3

Shock-induced bubble collapse near an SBR foam - Velocity

Download Cao et al. supplementay movie 3(Video)
Video 14.3 MB