Hostname: page-component-6587cd75c8-r56mn Total loading time: 0 Render date: 2025-04-23T18:39:50.517Z Has data issue: false hasContentIssue false

Shock attenuation of dense granular media

Published online by Cambridge University Press:  16 April 2025

Panpan Han
Affiliation:
State Key Laboratory of Explosive Science and Safety Protection, Beijing Institute of Technology, Beijing 100081, PR China
Kun Xue*
Affiliation:
State Key Laboratory of Explosive Science and Safety Protection, Beijing Institute of Technology, Beijing 100081, PR China National Key Laboratory of Computational Physics, Beijing 100088, PR China
*
Corresponding author: Kun Xue, [email protected]

Abstract

Attenuation of shock waves through dense granular media with varying macro-scale and micro-scale parameters has been numerically studied in this work by a coupled Eulerian–Lagrangian approach. The results elucidate the correlation between the attenuation mechanism and the nature of shock-induced unsteady flows inside the granular media. As the shock transmission becomes trivial relative to the establishment of unsteady interpore flows, giving way to the gas filtration, the shock attenuation mechanism transitions from the shock dynamics and deduction of propagation area associated with the shock transmission, to the drag-related friction dissipation alongside the gas filtration. The ratio between the maximum shock transmission length and the thickness of the particle layer is found to be a proper indicator of the nature of shock-induced flows. More importantly, it is this ratio that successfully collapses the upstream and downstream pressures of shock impacted particle layers with widely ranging thickness and volume fraction, leading to a universal scaling law for the shock attenuation effect. We further propose a correlation between the structure of particle layer and the corresponding maximum shock transmission length, guaranteeing adequate theoretical predictions of the upstream and downstream pressures. These predictions are also necessary for an accurate estimation of the spread rate of shock dispersed particle bed through a pressure-gradient-based scaling method.

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Baer, M.R. & Nunziato, J.W. 1986 A two-phase mixture theory for the deflagration-to-detonation transition (ddt) in reactive granular materials. Intl J. Multiphase Flow 12 (6), 861889.Google Scholar
Bakken, J., Slungaard, T., Engebretsen, T. & Christensen, S.O. 2003 Attenuation of shock waves by granular filters. Shock Waves 13 (1), 3340.Google Scholar
Ben-Dor, G., Britan, A., Elperin, T., Igra, O. & Jiang, J.P. 1997 Experimental investigation of the interaction between weak shock waves and granular layers. Exp. Fluids 22 (5), 432443.Google Scholar
Borchard-Ott, W. 2011 Crystallography: An Introduction. 3rd edn. Springer.Google Scholar
Britan, A., Ben-Dor, G., Elperin, T., Igra, O. & Jiang, J.P. 1997 Gas filtration during the impact of weak shock waves on granular layers. Intl J. Multiphase Flow 23 (3), 473491.CrossRefGoogle Scholar
Britan, A., Ben-Dor, G., Igra, O. & Shapiro, H. 2001 Shock waves attenuation by granular filters. Intl J. Multiphase Flow 27 (4), 617634.CrossRefGoogle Scholar
Britan, A., Ben-Dor, G., Igra, O. & Shapiro, H. 2006 Development of a general approach for predicting the pressure fields of unsteady gas flows through granular media. J. Appl. Phys. 99 (9), 093519.CrossRefGoogle Scholar
Britan, A., Shapiro, H. & Ben-Dor, G. 2007 The contribution of shock tubes to simplified analysis of gas filtration through granular media. J. Fluid Mech. 586, 147176.Google Scholar
Britan, A., Shapiro, H., Liverts, M., Ben-Dor, G., Chinnayya, A. & Hadjadj, A. 2013 Macro-mechanical modelling of blast wave mitigation in foams. Part I: review of available experiments and models. Shock Waves 23 (1), 523.CrossRefGoogle Scholar
Chang, E.J. & Kailasanath, K. 2003 Shock wave interactions with particles and liquid fuel droplets. Shock Waves 12 (4), 333341.CrossRefGoogle Scholar
Clift, R. & Gauvin, W.H. 1970 The motion of particles in turbulent gas streams. In Proc. Chemeca, pp. 1425.Google Scholar
Daniel, K.A. & Wagner, J.L. 2022 The shock-induced dispersal of particle curtains with varying material density. Intl J. Multiphase Flow 152, 104082.CrossRefGoogle Scholar
Davis, S.L., Dittmann, T.B., Jacobs, G.B. & Don, W.S. 2013 Dispersion of a cloud of particles by a moving shock: effects of the shape, angle of rotation, and aspect ratio. J. Appl. Mech. Tech. Phys 54 (6), 900912.CrossRefGoogle Scholar
Del Prete, E., Chinnayya, A., Domergue, L., Hadjadj, A. & Haas, J.F. 2013 Blast wave mitigation by dry aqueous foams. Shock Waves 23 (1), 3953.Google Scholar
DeMauro, E.P., Wagner, J.L., DeChant, L.J., Beresh, S.J. & Turpin, A.M. 2019 Improved scaling laws for the shock-induced dispersal of a dense particle curtain. J. Fluid Mech. 876, 881895.CrossRefGoogle Scholar
Ergun, S. 1952 Fluid flow through packed columns. Chem. Eng. Prog. 48, 8994.Google Scholar
Eriksen, F.K., Toussaint, R., Turquet, A.L., Måløy, K.J. & Flekkøy, E.G. 2018 Pressure evolution and deformation of confined granular media during pneumatic fracturing. Phys. Rev. E 97 (1), 012908.CrossRefGoogle ScholarPubMed
Frost, D.L. 2018 Heterogeneous/particle-laden blast waves. Shock Waves 28 (3), 439449.CrossRefGoogle Scholar
Gubin, S.A. 2018 Shock waves in porous media. J. Phys.: Conf. Ser. 1099, 012015.Google Scholar
Houim, R.W. & Oran, E.S. 2016 A multiphase model for compressible granular-gaseous flows: formulation and initial tests. J. Fluid Mech. 789, 166220.CrossRefGoogle Scholar
Ji, S.Y., Li, P.F. & Chen, X.D. 2012 Experiments on shock-absorbing capacity of granular matter under impact load. Acta Phys. Sinica 61 (18), 184703184703.Google Scholar
Koneru, R.B., Rollin, B. & Durant, B. 2020 A numerical study of particle jetting in a dense particle bed driven by an air-blast. Phys. Fluids 32 (9), 093301.CrossRefGoogle Scholar
Levy, A., Ben-Dor, G., Skews, B.W. & Sorek, S. 1993 Headon collision of normal shock waves with rigid porous materials. Expl Fluids 15 (3), 183190.Google Scholar
Li, J.R., Zeng, J.S. & Xue, K. 2023 Pressure evolution in shock-compacted granular media. Petrol. Sci. 20 (6), 37363751.CrossRefGoogle Scholar
Ling, Y., Wagner, J.L., Beresh, S.J., Kearney, S.P. & Balachandar, S. 2012 Interaction of a planar shock wave with a dense particle curtain: modeling and experiments. Phys. Fluids 24 (11), 113301.CrossRefGoogle Scholar
Liu, X.D. 1994 Weighted essentially non-oscillatory schemes. J. Comput. Phys. 115 (1), 200212.CrossRefGoogle Scholar
Lv, H., Wang, Z., Zhang, Y. & Li, J. 2018 Shock attenuation by densely packed micro-particle wall. Exp. Fluids 59 (9), 140.CrossRefGoogle Scholar
Medvedev, S.P. & Gelfand B.E., F.S.M. 1990 Attenuation of shock waves by screens of granular material. J. Engng Phys. 58 (6), 714718.CrossRefGoogle Scholar
Mehta, Y., Goetsch, R.J., Vasilyev, O.V. & Regele, J.D. 2022 A particle resolved simulation approach for studying shock interactions with moving, colliding solid particles. Comput. Fluids 248, 105670.CrossRefGoogle Scholar
Mehta, Y., Jackson, T.L. & Balachandar, S. 2019 a Pseudo-turbulence in inviscid simulations of shock interacting with a bed of randomly distributed particles. Shock Waves 30 (1), 4962.CrossRefGoogle Scholar
Mehta, Y., Neal, C., Jackson, T.L., Balachandar, S. & Thakur, S. 2016 Shock interaction with three-dimensional face centered cubic array of particles. Phys. Rev. Fluids 1 (5), 054202.CrossRefGoogle Scholar
Mehta, Y., Neal, C., Salari, K., Jackson, T.L., Balachandar, S. & Thakur, S. 2018 Propagation of a strong shock over a random bed of spherical particles. J. Fluid Mech. 839, 157197.CrossRefGoogle Scholar
Mehta, Y., Salari, K., Jackson, T.L. & Balachandar, S. 2019 Effect of Mach number and volume fraction in air-shock interacting with a bed of randomly distributed spherical particles. Phys. Rev. Fluids 4 (1), 014303.CrossRefGoogle Scholar
Meng, B.Q., Zeng, J.S., Tian, B.L., Li, L., He, Z.W. & Guo, X.H. 2019 Modeling and verification of the Richtmyer–Meshkov instability linear growth rate of the dense gas-particle flow. Phys. Fluids 31 (7), 074102.CrossRefGoogle Scholar
Morrison, F.A. 1972 Transient gas flow in a porous column. Ind. Engng Chem. Fundam. 11 (2), 191197.CrossRefGoogle Scholar
Naiman, H. & Knight, D.D. 2007 The effect of porosity on shock interaction with a rigid, porous barrier. Shock Waves 16 (4-5), 321337.CrossRefGoogle Scholar
Osnes, A.N. & Vartdal, M. 2021 Performance of drag force models for shock-accelerated flow in dense particle suspensions. Intl J. Multiphase Flow 137, 103563.CrossRefGoogle Scholar
Osnes, A.N., Vartdal, M., Omang, M.G. & Reif, B.A.P. 2019 Computational analysis of shock-induced flow through stationary particle clouds. Intl J. Multiphase Flow 114, 268286.CrossRefGoogle Scholar
Osnes, A.N., Vartdal, M., Omang, M.G. & Reif, B.A.P. 2020 Particle-resolved simulations of shock-induced flow through particle clouds at different Reynolds numbers. Phys. Rev. Fluids 5 (1), 014305.CrossRefGoogle Scholar
Parmar, M., Haselbacher, A. & Balachandar, S. 2010 Improved drag correlation for spheres and application to shock-tube experiments. AIAA J. 48 (6), 12731276.CrossRefGoogle Scholar
Parmar, M., Haselbacher, A. & Balachandar, S. 2011 Generalized Basset–Boussinesq–Oseen equation for unsteady forces on a sphere in a compressible flow. Phys. Rev. Lett. 106 (8), 084501.CrossRefGoogle Scholar
Parmar, M., Haselbacher, A. & Balachandar, S. 2012 Equation of motion for a sphere in non-uniform compressible flows. J. Fluid Mech. 699, 352375.CrossRefGoogle Scholar
Petel, O.E., Jetté, F.X., Goroshin, S., Frost, D.L. & Ouellet, S. 2011 Blast wave attenuation through a composite of varying layer distribution. Shock Waves 21 (3), 215224.CrossRefGoogle Scholar
Pontalier, Q., Loiseau, J., Goroshin, S. & Frost, D.L. 2018 Experimental investigation of blast mitigation and particle-blast interaction during the explosive dispersal of particles and liquids. Shock Waves 28 (3), 489511.CrossRefGoogle Scholar
Ram, O., Ben-Dor, G. & Sadot, O. 2018 On the pressure buildup behind an array of perforated plates impinged by a normal shock wave. Expl Therm. Fluid Sci. 92, 211221.CrossRefGoogle Scholar
Ram, O. & Sadot, O. 2013 A simple constitutive model for predicting the pressure histories developed behind rigid porous media impinged by shock waves. J. Fluid Mech. 718, 507523.CrossRefGoogle Scholar
Ram, O. & Sadot, O. 2015 Analysis of the pressure buildup behind rigid porous media impinged by shock waves in time and frequency domains. J. Fluid Mech. 779, 842858.CrossRefGoogle Scholar
Regele, J.D., Rabinovitch, J., Colonius, T. & Blanquart, G. 2014 Unsteady effects in dense, high speed, particle laden flows. Intl J. Multiphase Flow 61, 113.CrossRefGoogle Scholar
Rogue, X., Rodriguez, G., Haas, J.-F. & Saurel, R. 1998 Experimental and numerical investigation of the shock-induced fluidization of a particles bed. Shock Waves 8 (1), 2945.CrossRefGoogle Scholar
Sangani, A.S., Zhang, D.Z. & Prosperetti, A. 1991 The added mass, Basset, and viscous drag coefficients in nondilute bubbly liquids undergoing small-amplitude oscillatory motion. Phys. Fluids A: Fluid Dyn. 3 (12), 29552970.CrossRefGoogle Scholar
Skews, B.W. 2001 Shock wave propagation in multi-phase media. In Handbook of Shock Waves, 545596. Academic, New York.CrossRefGoogle Scholar
Skews, B.W., Atkins, M.D. & Seitz, M.W. 1993 The impact of a shock wave on porous compressible foams. J. Fluid Mech. 253, 245265.CrossRefGoogle Scholar
Smith, P. 2010 Blast walls for structural protection against high explosive threats: a review. Intl J. Protective Struct. 1 (1), 6784.CrossRefGoogle Scholar
Sugiyama, Y., Ando, H., Shimura, K. & Matsuo, A. 2019 Numerical investigation of the interaction between a shock wave and a particle cloud curtain using a CFD-DEM model. Shock Waves 29 (4), 499510.CrossRefGoogle Scholar
Sun, M., Saito, T., Takayama, K. & Tanno, H. 2005 Unsteady drag on a sphere by shock wave loading. Shock Waves 14 (1-2), 39.CrossRefGoogle Scholar
Sundaresan, S., Ozel, A. & Kolehmainen, J. 2018 Toward constitutive models for momentum, species, and energy transport in gas-particle flows. Annu. Rev. Chem. Biomol. Engng 9 (1), 6181.CrossRefGoogle ScholarPubMed
Takahashi, S., Nagata, T., Mizuno, Y., Nonomura, T. & Obayashi, S. 2022 Effect of particle arrangement and density on aerodynamic interference between twin particles interacting with a plane shock wave. Phys. Fluids 34 (11), 113301.CrossRefGoogle Scholar
Theofanous, T.G. & Chang, C.-H. 2017 The dynamics of dense particle clouds subjected to shock waves. Part 2. Modeling/numerical issues and the way forward. Intl J. Multiphase Flow 89, 177206.CrossRefGoogle Scholar
Theofanous, T.G., Mitkin, V. & Chang, C.-H. 2016 The dynamics of dense particle clouds subjected to shock waves. Part 1. Experiments and scaling laws. J. Fluid Mech. 792, 658681.CrossRefGoogle Scholar
Tian, B.L., Zeng, J.S., Meng, B.Q., Chen, Q., Guo, X.H. & Xue, K. 2020 Compressible multiphase particle-in-cell method (CMP-PIC) for full pattern flows of gas-particle system. J. Comput. Phys. 418, 109602.CrossRefGoogle Scholar
Toro, E.F. 2009 Riemann solvers and numerical methods for fluid dynamics: a practical introduction.CrossRefGoogle Scholar
van der Grinten, J.G.M., van Dongen, M.E.H. & van der Kogel, H. 1985 A shock-tube technique for studying pore-pressure propagation in a dry and water-saturated porous medium. J. Appl. Phys. 58 (8), 29372942.CrossRefGoogle Scholar
Vivek, P. & Sitharam, T.G. 2019 Granular Materials Under Shock and Blast Loading. 1st edn. Springer.Google Scholar
Wagner, J.L., Beresh, S.J., Kearney, S.P., Trott, W.M., Castaneda, J.N., Pruett, B.O. & Baer, M.R. 2012 A multiphase shock tube for shock wave interactions with dense particle fields. Exp. Fluids 52 (6), 15071517.CrossRefGoogle Scholar
Xue, K., Du, K., Shi, X., Gan, Y. & Bai, C. 2018 Dual hierarchical particle jetting of a particle ring undergoing radial explosion. Soft Matter 14 (22), 44224431.CrossRefGoogle ScholarPubMed
Xue, K., Shi, X., Zeng, J., Tian, B., Han, P., Li, J., Liu, L., Meng, B., Guo, X. & Bai, C. 2020 Explosion-driven interfacial instabilities of granular media. Phys. Fluids 32 (8), 084104.CrossRefGoogle Scholar
Zhang, F. & Frost, D.L. 2001 Explosive dispersal of solid particles. Shock Waves 10 (6), 431433.CrossRefGoogle Scholar
Zloch, N. 1976 Shock attenuation in beds of granular solids. Arch. Mech. 28, 817825.Google Scholar