Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-28T20:57:25.775Z Has data issue: false hasContentIssue false

Shear-induced self-diffusion in non-colloidal suspensions

Published online by Cambridge University Press:  28 April 2004

ASIMINA SIEROU
Affiliation:
Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
JOHN F. BRADY
Affiliation:
Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA

Abstract

Self-diffusion in a monodisperse suspension of non-Brownian particles in simple shear flow is studied using accelerated Stokesian dynamics (ASD) simulation. The availability of a much faster computational algorithm allows the study of large systems (typically of 1000 particles) and the extraction of accurate results for the complete shear-induced self-diffusivity tensor. The finite, and often large, autocorrelation time requires the mean-square displacements to be followed for very long times, which is now possible with ASD. The self-diffusivities compare favourably with the available experimental measurements when allowance is made for the finite strains sampled in the experiments. The relationship between the mean-square displacements and the diffusivities appearing in a Fokker–Planck equation when advection couples to diffusion is discussed.

Type
Papers
Copyright
© 2004 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)