Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-09T21:54:23.444Z Has data issue: false hasContentIssue false

Shear-enhanced convection in a mushy layer

Published online by Cambridge University Press:  10 October 2008

JEROME A. NEUFELD
Affiliation:
Department of Geology and Geophysics, Yale University, New Haven, CT 06520, USA
J. S. WETTLAUFER
Affiliation:
Department of Geology and Geophysics, Yale University, New Haven, CT 06520, USA Department of Physics, Yale University, New Haven, CT 06520, USA

Abstract

We investigate the effect of an external shear flow on the buoyant instabilities inherent in the directional solidification of a dendritic mushy layer. In the presence of an external shear flow, perturbations of the mush–liquid interface lead to perturbed flow in the bulk fluid that create pressure variations along the mush–liquid interface. These pressure variations drive flow in the mushy layer. A numerical analysis of the stability of the system provides the critical porous-medium Rayleigh number as a function of both the external flow speed and the wavenumber of the interfacial perturbations. In the limit of zero external flow we recover the so-called boundary and mushy layer modes of buoyancy-driven convection first established by Worster (J. Fluid Mech., vol. 237, 1992b, p. 649). We find that the application of an external flow can significantly reduce the stability of both the boundary and mushy layer modes. The resultant forced mushy layer mode gives rise to the formation of channels of reduced solid fraction perpendicular to the applied flow that are distinct from the planform found in the absence of an external flow. The stability of the system is examined as a function of the principal thermodynamic and dynamic parameters, and the results are applied to the solidification of sea ice in the presence of vigorous oceanic flow.

Type
Papers
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Acher, U. M., Mattheij, R. M. M. & Russell, R. D. 1987 Numerical Solution of Boundary Value Problems for Ordinary Differential Equations. Classics in Applied Mathematics, vol. 23. SIAM.Google Scholar
Beavers, G. S. & Joseph, D. D. 1967 Boundary conditions at a naturally permeable wall. J. Fluid Mech. 30 (1), 197207.CrossRefGoogle Scholar
Chen, C. F. & Chen, F. 1991 Experimental study of directional solidification of aqueous ammonium chloride solution. J. Fluid Mech. 227, 567586.CrossRefGoogle Scholar
Chen, F., Lu, J. W. & Yang, T. L. 1994 Conective instability in ammonium chloride solution directionally solidified from below. J. Fluid Mech. 276, 163187.CrossRefGoogle Scholar
Chung, C. A. & Chen, F. 2001 Morphological instability in a directionally solidifying binary solution with an imposed shear flow. J. Fluid Mech. 436, 85106.CrossRefGoogle Scholar
Copley, S. M., Giamei, A. F., Johnson, S. M. & Hornbecker, M. F. 1970 The origin of freckles in binary alloys. IMA J. Appl. Maths 35, 159174.Google Scholar
Davis, S. H. 1990 Hydrodynamic interactions in directional solidification. J. Fluid Mech. 212, 241262.CrossRefGoogle Scholar
Davis, S. H. 2001 Theory of Solidification. Cambridge University Press.CrossRefGoogle Scholar
Feltham, D. L., Untersteiner, N., Wettlaufer, J. S. & Worster, M. G. 2006 Sea ice is a mushy layer. Geophys. Res. Lett. 33, L14501.CrossRefGoogle Scholar
Feltham, D. L. & Worster, M. G. 1999 Flow-induced morphological instability of a mushy layer. J. Fluid Mech. 391, 337357.CrossRefGoogle Scholar
Feltham, D. L., Worster, M. G. & Wettlaufer, J. S. 2002 The influence of ocean flow on newly forming sea ice. J. Geophys. Res. 107 (C2), 3009.Google Scholar
Forth, S. A. & Wheeler, A. A. 1989 Hydrodynamic and morphological stability of the unidirectional solidification of a freezing binary alloy: a simple model. J. Fluid Mech. 202, 339366.CrossRefGoogle Scholar
Forth, S. A. & Wheeler, A. A. 1992 Coupled convective and morphological instability in a simple model of the solidification of a binary alloy, including a shear flow. J. Fluid Mech. 236, 6194.CrossRefGoogle Scholar
Glicksman, M. E., Coriell, S. R. & McFadden, G. B. 1986 Interaction of flows with the crystal-melt interface. Annu. Rev. Fluid Mech. 18, 307335.CrossRefGoogle Scholar
Hills, R. N., Loper, D. E. & Roberts, P. H. 1983 A thermodynamically consistent model of a mushy zone. Q. J. Mech. Appl. Maths 36 (4), 505539.CrossRefGoogle Scholar
Keller, H. B. 1976 Numerical Methods for Two-Point Boundary-Value Problems. SIAM.CrossRefGoogle Scholar
Liu, S. & Hellawell, A. 1999 Experiments with constrained chimney-plume flows in the system ammonium-chloride water: comparison with the unconstrained case. J. Fluid Mech. 388, 2148.CrossRefGoogle Scholar
Morison, J. H. & McPhee, M. 2001 Encyclopedia of Ocean Sciences, chap. 3. Ice-Ocean Interaction, pp. 12711281. Academic.CrossRefGoogle Scholar
Mullins, W. W. & Sekerka, R. F. 1964 Stability of a planar interface during solidification of a dilute binary alloy. J. Appl. Phys. 35 (2), 444451.CrossRefGoogle Scholar
Neufeld, J. A. & Wettlaufer, J. S. 2008 An experimental study of shear-enhanced convection in a mushy layer. J. Fluid Mech. 612, 363385.CrossRefGoogle Scholar
Neufeld, J. A., Wettlaufer, J. S., Feltham, D. L. & Worster, M. G. 2006 Corrigendum to flow-induced morphological instability of a mushy layer. J. Fluid Mech. 549, 442443.Google Scholar
Nghiem, S. V., Rigor, I. G., Perovich, D. K., Clemente-Colón, P. & Weatherly, J. W. 2007 Rapid reduction of Arctic perennial sea ice. Geophys. Res. Lett. 34, LI9504.CrossRefGoogle Scholar
Press, W. H., Teukolsky, S. A., Vetterling, W. T. & Flannery, B. P. 1997 Numerical Recipes in Fortran 77: The Art of Scientific Computing, 2nd edn.Cambridge University Press.Google Scholar
Tait, S. & Jaupart, C. 1992 Compositional convection in a reactive crystalline mush and melt differentiation. J. Geophys. Res. 97 (B5), 67356756.CrossRefGoogle Scholar
Wells, M. G. & Wettlaufer, J. S. 2007 The long-term circulation driven by density currents in a two-layer stratified basin. J. Fluid Mech. 572, 3758.CrossRefGoogle Scholar
Wettlaufer, J. S., Worster, M. G. & Huppert, H. E. 1997 Natural convection during solidification of an alloy from above with application to the evolution of sea ice. J. Fluid Mech. 344, 291316.CrossRefGoogle Scholar
Wettlaufer, J. S., Worster, M. G. & Huppert, H. E. 2000 Solidification of leads: Theory, experiment, and field observations. J. Geophys. Res. 105 (C1), 11231134.CrossRefGoogle Scholar
Worster, M. G. 1986 Solidification of an alloy from a cooled boundary. J. Fluid Mech. 167, 481501.CrossRefGoogle Scholar
Worster, M. G. 1992 a The dynamics of mushy layers. In Interactive dynamics of convection and solidification (ed. Davis, S. H., Huppert, H. E., Müller, W. & Worster, M. G.), pp. 113138. Kluwer.CrossRefGoogle Scholar
Worster, M. G. 1992 b Instabilities of the liquid and mushy regions during solidification of alloys. J. Fluid Mech. 237, 649669.CrossRefGoogle Scholar
Worster, M. G. 1997 Convection in mushy layers. Annu. Revi. Fluid Mech. 29, 91122.CrossRefGoogle Scholar
Worster, M. G. 2000 Solidification of fluids. In Perspectives in Fluid Dynamics: A Collective Introduction to Current Research, chap. Solidification of Fluids (ed. Batchelor, G. K., Moffatt, H. K. & Worster, M. G.), pp. 393446. Cambridge University Press.Google Scholar