Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-09T04:06:19.088Z Has data issue: false hasContentIssue false

Sharp acceleration of a macroscopic contact line induced by a particle

Published online by Cambridge University Press:  29 September 2017

Lizhong Mu
Affiliation:
Research Institute for Science and Technology, Tokyo University of Science, Chiba 278-8510, Japan Key laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of Energy and Power Engineering, Dalian University of Technology, Dalian, 116024, China
Daichi Kondo
Affiliation:
Division of Mechanical Engineering, Graduate School of Science and Technology, Tokyo University of Science, Chiba 278-8510, Japan
Motochika Inoue
Affiliation:
Division of Mechanical Engineering, Graduate School of Science and Technology, Tokyo University of Science, Chiba 278-8510, Japan
Toshihiro Kaneko
Affiliation:
Department of Mechanical Engineering, Faculty of Science and Technology, Tokyo University of Science, Chiba 278-8510, Japan
Harunori N. Yoshikawa*
Affiliation:
Université Côte d’Azur, CNRS, UMR 7351, Laboratoire J.-A. Dieudonné, 06108 Nice Cedex 02, France
Farzam Zoueshtiagh
Affiliation:
Univ. Lille, CNRS, ECLille, ISEN, Univ. Valenciennes, UMR 8520 - IEMN, F-59000 Lille, France
Ichiro Ueno*
Affiliation:
Department of Mechanical Engineering, Faculty of Science and Technology, Tokyo University of Science, Chiba 278-8510, Japan
*
Email addresses for correspondence: [email protected], [email protected]
Email addresses for correspondence: [email protected], [email protected]

Abstract

Wetting of a planar solid substrate is investigated in the presence of a macroscopic particle in the complete wetting regime. A drop of silicone oil spreads on the substrate and its macroscopic edge is incident on the particle at the late stage of spreading. The drop–particle interaction is observed in detail by shadowgraph and interferometry. Although the spreading drop edge is pinned by the particle for a short time, a sharp acceleration occurs when the liquid starts wetting the extra surface area offered by the particle and forming a meniscus. This process yields a net gain in spreading speed. A theoretical model based on the classical wetting dynamics dictated by Cox’s law is developed. It predicts that the capillary energy of the meniscus gives rise to a rapid motion of the liquid edge, showing good agreement with the dynamics observed in the experiments.

Type
Rapids
Copyright
© 2017 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bhushan, B., Jung, Y. C. & Koch, K. 2009 Self-cleaning efficiency of artificial superhydrophobic surfaces. Langmuir 25, 32403248.Google Scholar
Biance, A.-L., Clanet, C. & Quéré, D. 2004 First steps in the spreading of a liquid droplet. Phys. Rev. E 69, 016301.Google ScholarPubMed
Bihi, I., Baudoin, M., Butler, J. E., Faille, C. & Zoueshtiagh, F. 2016 Inverse Saffman–Taylor experiments with particles lead to capillarity driven fingering instabilities. Phys. Rev. Lett. 117, 034501.Google Scholar
Bird, J. C., Mandre, S. & Stone, H. A. 2008 Short-time dynamics of partial wetting. Phys. Rev. Lett. 100, 234501.Google Scholar
Bonn, D., Eggers, J., Indekeu, J., Meunier, J. & Rolley, E. 2009 Wetting and spreading. Rev. Mod. Phys. 81, 739805.CrossRefGoogle Scholar
Cazabat, A. M. & Cohen Stuart, M. A. 1986 Dynamics of wetting: effects of surface roughness. J. Phys. Chem. 90, 58455849.CrossRefGoogle Scholar
Cox, R. G. 1986 The dynamics of the spreading of liquids on a solid surface. Part 1. Viscous flow. J. Fluid Mech. 168, 169194.CrossRefGoogle Scholar
Dash, S., Alt, M. T. & Garimella, S. V. 2012 Hybrid surface design for robust superhydrophobicity. Langmuir 28, 96069615.Google Scholar
de Gennes, P. G. 1985 Wetting: statics and dynamics. Rev. Mod. Phys. 57 (3), 827863.Google Scholar
de Gennes, P. G., Brochard-Wyart, F. & Quéré, D. 2002 Gouttes, Bulles, Perles et Ondes. Belin.Google Scholar
Hervet, H. & de Gennes, P. G. 1984 Dynamique du mouillage: films précurseurs sur solide sec. C. R. Acad. Sci. Ser. II 299 (9), 499503.Google Scholar
Koch, K. & Barthlott, W. 2009 Superhydrophobic and superhydrophilic plant surfaces: an inspiration for biomimetic materials. Phil. Trans. R. Soc. Lond. A 367, 14871509.Google ScholarPubMed
Koch, K., Blecher, I. C., König, G., Kehraus, S. & Barthlott, W. 2009 The superhydrophilic and superoleophilic leaf surface of Ruellia devosiana (Acanthaceae): a biological model for spreading of water and oil on surfaces. Functional Plant Biology 36, 339350.CrossRefGoogle ScholarPubMed
Li, X., Ma, X. & Lan, Z. 2010 Dynamic behavior of the water droplet impact on a textured hydrophobic/superhydrophobic surface: the effect of the remaining liquid film arising on the pillars’ tops on the contact time. Langmuir 26 (7), 48314838.CrossRefGoogle ScholarPubMed
Liu, Y., Moevius, L., Xu, X., Qian, T., Yeomans, J. M. & Wang, Z. 2014 Pancake bouncing on superhydrophobic surfaces. Nat. Phys. 10, 515519.CrossRefGoogle ScholarPubMed
Lopez, J., Miller, C. A. & Ruckenstein, E. 1976 Spreading kinetics of liquid drops on solids. J. Colloid Interface Sci. 56 (3), 460468.CrossRefGoogle Scholar
Marmur, A. 1983 Equilibrium and spreading of liquids on solid surfaces. Adv. Colloid Interface Sci. 19, 75102.CrossRefGoogle Scholar
Papadopoulos, P., Deng, X., Mammen, L., Drotlef, D.-M., Battagliarin, G., Li, C., Müllen, K., Landfester, K., del Campo, A. & Butt, H.-J. 2012 Wetting on the microscale: shape of a liquid drop on a microstructured surface at different length scales. Langmuir 28, 83928398.Google Scholar
Popescu, M. N., Oshanin, G., Dietrich, S. & Cazabat, A.-M. 2012 Precursor films in wetting phenomena. J. Phys. 24, 243102.Google Scholar
Snoeijer, J. H. & Andreotti, B. 2013 Moving contact lines: scales, regimes, and dynamical transitions. Annu. Rev. Fluid Mech. 45, 269292.Google Scholar
Snoeijer, J. H. & Eggers, J. 2010 Asymptotic analysis of the dewetting rim. Phys. Rev. E 82 (5), 056314.Google Scholar
Tanner, L. H. 1979 The spreading of silicone oil drops on horizontal surfaces. J. Phys. D: Appl. Phys. 12, 14731484.Google Scholar
Voinov, O. V. 1976 Hydrodynamics of wetting. Fluid Dyn. 11 (5), 714721.Google Scholar
Wagner, T., Neinhuis, C. & Barthlott, W. 1996 Wettability and contaminability of insect wings as a function of their surface sculptures. Acta Zool. (Stockholm) 77 (3), 213225.Google Scholar
Wang, J., Do-Quand, M., Cannon, J. J., Yue, F., Suzuki, Y., Amberg, G. & Shiomi, J. 2015 Surface structure determines dynamic wetting. Sci. Rep. 5, 8474.CrossRefGoogle ScholarPubMed
Yuan, Q. & Zhao, Y.-P. 2013 Multiscale dynamic wetting of a droplet on a lyophilic pillar-arrayed surface. J. Fluid Mech. 716, 171188.Google Scholar