Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-09T22:16:57.580Z Has data issue: false hasContentIssue false

Settling of a vesicle in the limit of quasispherical shapes

Published online by Cambridge University Press:  20 December 2011

G. Boedec
Affiliation:
M2P2, Aix-Marseille Univ., Technopole de Chateau-Gombert 13451 Marseille, France; M2P2, UMR CNRS 6181, 13451 Marseille, France; Centrale Marseille, 13451 Marseille, France
M. Jaeger
Affiliation:
M2P2, Aix-Marseille Univ., Technopole de Chateau-Gombert 13451 Marseille, France; M2P2, UMR CNRS 6181, 13451 Marseille, France; Centrale Marseille, 13451 Marseille, France
M. Leonetti*
Affiliation:
IRPHE, Aix-Marseille Univ., Technopole de Chateau-Gombert 13384 Marseille, France; IRPHE, UMR CNRS 6594, 13384 Marseille, France; Centrale Marseille, 13451 Marseille, France
*
Email address for correspondence: [email protected]

Abstract

Vesicles are drops of radius of a few tens of micrometres bounded by an impermeable lipid membrane of approximately 4 nm thickness in a viscous fluid. The salient characteristics of such a deformable object are a membrane rigidity governed by flexion due to curvature energy and a two-dimensional membrane fluidity characterized by a local membrane incompressibility. This provides unique properties with strong constraints on the internal volume and membrane area. Yet, when subjected to external stresses, vesicles exhibit a large deformability. The deformation of a settling vesicle in an infinite flow is studied theoretically, assuming a quasispherical shape and expanding all variables of the problem onto spherical harmonics. The contribution of thermal fluctuations is neglected in this analysis. A system of equations describing the temporal evolution of the shape is derived with this formalism. The final shape and the settling velocity are then determined and depend on two dimensionless parameters: the Bond number and the excess area. This simultaneous study leads to three stationary shapes, an egg-like shape already observed in an analogous experimental configuration in the limit of weak flow magnitude (Chatkaew, Georgelin, Jaeger & Leonetti, Phys. Rev. Lett, 2009, vol. 103(24), 248103), a parachute-like shape and a non-trivial non-axisymmetrical shape. The final shape depends on the initial conditions: prolate or oblate vesicle and orientation compared with gravity. The analytical solution in the small deformation regime is compared with numerical results obtained with a three-dimensional code. A very good agreement between numerical and theoretical results is found.

Type
Papers
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Abkarian, M., Lartigue, C. & Viallat, A. 2002 Tank treading and unbinding of deformable vesicles in shear flow: determination of the lift force. Phys. Rev. Lett. 88 (6), 068103.CrossRefGoogle ScholarPubMed
2. Angelova, M. I. & Dimitrov, 1986 Liposome electroformation. Faraday Discuss. 81, 303311.CrossRefGoogle Scholar
3. Barrera, R. G., Estevez, G. A. & Giraldo, J. 1985 Vector spherical harmonics and their application to magnetostatics. Eur. J. Phys. 6, 287294.CrossRefGoogle Scholar
4. Barthes-Biesel, D. 1980 Motion of a spherical microcapsule freely suspended in a linear shear flow. J. Fluid Mech. 100, 831.CrossRefGoogle Scholar
5. Barthes-Biesel, D. & Rallison, J. M. 1981 The time-dependent deformation of a capsule freely suspended in a linear shear-flow. J. Fluid Mech. 113, 251.CrossRefGoogle Scholar
6. Biben, T., Farutin, A. & Misbah, C. 2011 Three-dimensional vesicles under shear flow: Numerical study of dynamics and phase diagram. Phys. Rev. E 83 (3), 031921.CrossRefGoogle ScholarPubMed
7. Biben, T. & Misbah, C. 2003 Tumbling of vesicles under shear flow within an advected-field approach. Phys. Rev. E 67 (3), 031908.CrossRefGoogle ScholarPubMed
8. Boedec, G., Leonetti, M. & Jaeger, M. 2011 3d vesicle dynamics simulations with a linearly triangulated surface. J. Comput. Phys. 230, 10201034.CrossRefGoogle Scholar
9. Canham, P. B. 1970 The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell. J. Theor. Biol. 26, 6181.CrossRefGoogle ScholarPubMed
10. Cantat, I. & Misbah, C. 1999 Lift force and dynamical unbinding of adhering vesicles under shear flow. Phys. Rev. Lett. 83, 880.CrossRefGoogle Scholar
11. Carin, M., Barthes-Biesel, D., Edwards-Levy, F., Postel, C. & Andrei, D. 2003 Compression of biocompatible liquid filled hsa-alginate capsules: determination of the membrane mechanical properties. Biotechnol. Bioengng. 82, 207212.CrossRefGoogle ScholarPubMed
12. Chang, K. S. & Olbricht, W. L. 1993 Experimental studies of the deformation and breakup of a synthetic capsule in steady and unsteady simple shear flow. J. Fluid Mech. 250, 609633.CrossRefGoogle Scholar
13. Chatkaew, S., Georgelin, M., Jaeger, M. & Leonetti, M. 2009 Dynamics of vesicle unbinding under axisymmetric flow. Phys. Rev. Lett. 103 (24), 248103.CrossRefGoogle ScholarPubMed
14. Danker, G., Biben, T., Podgorski, T., Verdier, C. & Misbah, C. 2007 Dynamics and rheology of a dilute suspension of vesicles: higher-order theory. Phys. Rev. E 76 (4), 041905.CrossRefGoogle ScholarPubMed
15. Deschamps, J., Kantsler, V. & Steinberg, V. 2009 Phase diagram of single vesicle dynamical states in shear flow. Phys. Rev. Lett. 102 (11), 118105.CrossRefGoogle ScholarPubMed
16. Dimova, R., Riske, K. A., Aranda, S., Bezlyepkina, N., Knorr, R. L. & Lipowsky, R. 2007 Giant vesicles in electric fields. Soft Matt. 3, 817827.CrossRefGoogle ScholarPubMed
17. Dominak, L. M. & Keating, C. D. 2007 Polymer encapsulation within giant lipid vesicles. Langmuir 23 (13), 71487154.CrossRefGoogle ScholarPubMed
18. Duwe, H. P., Kaes, J. & Sackmann, E. 1990 Bending elastic moduli of lipid bilayers: modulation by solutes. J. Phys. France 51, 945961.CrossRefGoogle Scholar
19. Evans, E. & Rawicz, W. 1990 Entropy-driven tension and bending elasticity in condensed-fluid membranes. Phys. Rev. Lett. 64 (17), 20942097.CrossRefGoogle ScholarPubMed
20. Farutin, A., Biben, T. & Misbah, C. 2010 Analytical progress in the theory of vesicles under linear flow. Phys. Rev. E 81 (6), 061904.CrossRefGoogle ScholarPubMed
21. Helfrich, W. 1973 Elastic properties of lipid bilayers: theory and possible experiments. Z. Naturforsch. C 28, 693703.CrossRefGoogle ScholarPubMed
22. Henriksen, J. R. & Ipsen, J. H. 2002 Thermal undulations of quasi-spherical vesicles stabilized by gravity. Eur. Phys. J. E 9 (4), 365374.CrossRefGoogle ScholarPubMed
23. Huang, Z.-H., Abkarian, M. & Viallat, A. 2011 Sedimentation of vesicles: from pear-like shapes to microtether extrusion. New J. Phys. 13 (3), 035026.CrossRefGoogle Scholar
24. Husmann, M., Rehage, H., Dhenin, E. & Barthes-Biesel, D. 2005 Deformation and bursting of nonspherical polysiloxane microcapsules in a spinning-drop apparatus. J. Colloid Interface Sci. 282, 109119.CrossRefGoogle Scholar
25. Kantsler, V. & Steinberg, V. 2005 Orientation and dynamics of a vesicle in tank-treading motion in shear flow. Phys. Rev. Lett. 95 (25), 258101.CrossRefGoogle ScholarPubMed
26. Kantsler, V. & Steinberg, V. 2006 Transition to tumbling and two regimes of tumbling motion of a vesicle in shear flow. Phys. Rev. Lett. 96 (3), 036001.CrossRefGoogle ScholarPubMed
27. Kaoui, B., Farutin, A. & Misbah, C. 2009 Vesicles under simple shear flow: elucidating the role of relevant control parameters. Phys. Rev. E 80 (6), 061905.CrossRefGoogle ScholarPubMed
28. Keller, S. R. & Skalak, R. 1982 Motion of a tank-treading ellipsoidal particle in a shear flow. J. Fluid Mech. 120, 2747.CrossRefGoogle Scholar
29. Kern, N. & Fourcade, B. 1999 Vesicles in linearly forced motion. Europhys. Lett. 46 (2), 262.CrossRefGoogle Scholar
30. Kessler, S., Finken, R. & Seifert, U. 2008 Swinging and tumbling of elastic capsules in shear flow. J. Fluid Mech. 113, 207226.CrossRefGoogle Scholar
31. Koh, C. J. & Leal, L. G. 1989 The stability of drop shapes for translation at zero Reynolds number through a quiescent fluid. Phys. Fluids A 1, 13091313.CrossRefGoogle Scholar
32. Koh, C. J. & Leal, L. G. 1990 An experimental investigation on the stability of viscous drops translating through a quiescent fluid. Phys. Fluids A 2, 21032109.CrossRefGoogle Scholar
33. Kojima, M., Hinch, E. J. & Acrivos, A. 1984 The formation and expansion of a toroidal drop moving in a viscous fluid. Phys. Fluids 27, 1932.CrossRefGoogle Scholar
34. Kraus, M., Wintz, W., Seifert, U. & Lipowsky, R. 1996 Fluid vesicles in shear flow. Phys. Rev. Lett. 77 (17), 3685.CrossRefGoogle ScholarPubMed
35. Lebedev, V. V., Turitsyn, K. S. & Vergeles, S. S. 2007 Dynamics of nearly spherical vesicles in an external flow. Phys. Rev. Lett. 99 (21), 218101.CrossRefGoogle Scholar
36. Lebedev, V. V., Turitsyn, K. S. & Vergeles, S. S. 2008 Nearly spherical vesicles in an external flow. New J. Phys. 10 (4), 043044.CrossRefGoogle Scholar
37. Lefebvre, Y., Leclercl, E., Barthes-Biesel, D., Walter, J. & Edwards-Levy, F. 2008 Flow of artificial microcapsules in microfluidic channels: a method for determining the elastic properties of the membrane. Phys. Fluids 20, 123102.CrossRefGoogle Scholar
38. Li, T., Stachowiak, J. & Fletcher, D. 2009 Mixing solutions in inkjet formed vesicles. Methods Enzymol. 465, 7594.CrossRefGoogle ScholarPubMed
39. Lipowsky, R. & Sackmann, E.  (Ed.) 1995 Structure and Dynamics of Membranes. Elsevier.Google Scholar
40. Misbah, C. 2006 Vacillating breathing and tumbling of vesicles under shear flow. Phys. Rev. Lett. 96 (2), 028104.CrossRefGoogle ScholarPubMed
41. Morse, P. M. & Feshbach, H. 1953 Methods of Theoretical Physics. McGraw-Hill.Google Scholar
42. Noguchi, H & Gompper, G. 2005 Dynamics of fluid vesicles in shear flow: effect of membrane viscosity and thermal fluctuations. Phys. Rev. E 72, 011901.CrossRefGoogle ScholarPubMed
43. Puech, P.-H. & Brochard-Wyart, F. 2004 Membrane tensiometer for heavy giant vesicles. Eur. Phys. J. E 15 (2), 127132.CrossRefGoogle ScholarPubMed
44. Rehage, H., Husmann, M. & Walter, A. 2002 From two-dimensionnal model networks to microcapsules. Rheol. Acta 41, 292306.CrossRefGoogle Scholar
45. Rioual, F., Biben, T. & Misbah, C. 2004 Analytical analysis of a vesicle tumbling under a shear flow. Phys. Rev. E 69 (6), 061914.CrossRefGoogle Scholar
46. Risso, F., Colle-Paillot, F. & Zagzoule, M. 2006 Experimental investigation of a bioartificial capsule flowing in a narrow tube. J. Fluid Mech. 547, 149173.CrossRefGoogle Scholar
47. Seifert, U. 1997 Configurations of fluid membranes and vesicles. Adv. Phys. 46 (1), 13137.CrossRefGoogle Scholar
48. Seifert, U. 1999 Fluid membranes in hydrodynamic flow fields: formalism and an application to fluctuating quasispherical vesicles in shear flow. Eur. Phys. J. B. 8, 405415.CrossRefGoogle Scholar
49. Seifert, U., Berndl, K. & Lipowsky, R. 1991 Shape transformations of vesicles: phase diagrams for spontaneous-curvature and bilayer-coupling models. Phys. Rev. A 44, 11821202.CrossRefGoogle ScholarPubMed
50. Singer, S. J. & Nicolson, G. L. 1972 The fluid mosaic model of the structure of cell membranes. Science 175, 720731.CrossRefGoogle ScholarPubMed
51. Sukumaran, S. & Seifert, U. 2001 Influence of shear flow on vesicles near a wall: a numerical study. Phys. Rev. E 64 (1), 011916.CrossRefGoogle Scholar
52. Zhao, H. & Shaqfeh, E. S. G. 2011 The dynamics of a vesicle in simple shear flow. J. Fluid Mech. 674, 578604.CrossRefGoogle Scholar