Hostname: page-component-55f67697df-zh294 Total loading time: 0 Render date: 2025-05-09T18:30:09.511Z Has data issue: false hasContentIssue false

Settling dynamics of a non-Brownian suspension of spherical and cubic particles in Stokes flow

Published online by Cambridge University Press:  09 May 2025

Dipankar Kundu
Affiliation:
BCAM - Basque Center for Applied Mathematics, Alameda de Mazarredo 14 Bilbao, E48009, Spain
F. Balboa Usabiaga*
Affiliation:
BCAM - Basque Center for Applied Mathematics, Alameda de Mazarredo 14 Bilbao, E48009, Spain
M. Ellero
Affiliation:
BCAM - Basque Center for Applied Mathematics, Alameda de Mazarredo 14 Bilbao, E48009, Spain Ikerbasque Basque Foundation for Science, Calle de Maria Diaz de Haro 3 Bilbao, E48013, Spain Complex Fluids Research Group, Department of Chemical Engineering, Faculty of Science and Engineering, Swansea University, Swansea SA1 8EN, UK
*
Corresponding author: F. Balboa Usabiaga, [email protected]

Abstract

The present study investigates the gravity-driven settling dynamics of non-Brownian suspensions consisting of spherical and cubic particles within a triply periodic domain. We numerically examine the impact of solid volume fraction on the evolving microstructure of the suspension using the rigid multiblob method under Stokes flow conditions. Our simulations match macroscopic trends observed in experiments, and align well with established semi-empirical correlations across a broad range of volume fractions. At low to moderate solid volume fractions, the settling mechanism is governed primarily by hydrodynamic interactions between the particles and the surrounding fluid. However, frequent collisions between particles in a highly packed space tend to suppress velocity fluctuations at denser regimes. For dilute suspensions, transport properties are shaped predominantly by an anisotropic microstructure, though this anisotropy diminishes as many-body interactions intensify at higher volume fractions. Notably, cubic particles exhibit lower anisotropy in velocity fluctuations compared to spherical particles, owing to more efficient momentum and energy transfer from the gravity-driven direction to transverse directions. Finally, bidisperse suspensions with mixed particle shapes show enhanced velocity fluctuations, driven by shape-induced variations in drag and increased hydrodynamic disturbances. These fluctuations in turn affect the local sedimentation velocity field, leading to the segregation of particles in the mixture.

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Al-Naafa, M.A. & Selim, M.S. 1992 Sedimentation of monodisperse and bidisperse hard-sphere colloidal suspensions. AIChE J. 38 (10), 16181630.CrossRefGoogle Scholar
Ardekani, M.N., Costa, P., Breugem, W.P. & Brandt, L. 2016 Numerical study of the sedimentation of spheroidal particles. Intl J. Multiphase Flow 87, 1634.CrossRefGoogle Scholar
Balboa Usabiaga, F., Kallemov, B., Delmotte, B., Bhalla, A.P.S., Griffith, B.E. & Donev, A. 2016 Hydrodynamics of suspensions of passive and active rigid particles: a rigid multiblob approach. Commun. Appl. Maths Comput. Sci. 11 (2), 217296.CrossRefGoogle Scholar
Batchelor, G.K. 1972 Sedimentation in a dilute dispersion of spheres. J. Fluid Mech. 52 (2), 245268.CrossRefGoogle Scholar
Batchelor, G.K. & Wen, C.-S. 1982 Sedimentation in a dilute polydisperse system of interacting spheres. Part 2. Numerical results. J. Fluid Mech. 124, 495528.CrossRefGoogle Scholar
Brady, J.F. & Bossis, G. 1988 Stokesian dynamics. Annu. Rev. Fluid Mech. 20 (1), 111157.CrossRefGoogle Scholar
Brenner, M.P. 1999 Screening mechanisms in sedimentation. Phys. Fluids 11 (4), 754772.CrossRefGoogle Scholar
Caflisch, R.E. & Luke, J.H.C. 1985 Variance in the sedimentation speed of a suspension. Phys. Fluids 28 (3), 759760.CrossRefGoogle Scholar
Chen, H., Jia, X., Fairweather, M. & Hunter, T.N. 2023 Characterising the sedimentation of bidisperse colloidal silica using analytical centrifugation. Adv. Powder Technol. 34 (2), 103950.CrossRefGoogle Scholar
Chrust, M., Bouchet, G. & Dušek, J. 2013 Numerical simulation of the dynamics of freely falling discs. Phys. Fluids 25 (4), 044102044125.CrossRefGoogle Scholar
Climent, E. & Maxey, M.R. 2003 Numerical simulations of random suspensions at finite Reynolds numbers. Intl J. Multiphase Flow 29 (4), 579601.CrossRefGoogle Scholar
Cunha, F.R., Abade, G.C., Sousa, A.J. & Hinch, E.J. 2002 Modeling and direct simulation of velocity fluctuations and particle-velocity correlations in sedimentation. J. Fluids Engng 124 (4), 957968.CrossRefGoogle Scholar
Cwalina, C.D., Harrison, K.J. & Wagner, N.J. 2016 Rheology of cubic particles suspended in a Newtonian fluid. Soft Matter 12 (20), 46544665.CrossRefGoogle Scholar
Davies, R. 1968 The experimental study of the differential settling of particles in suspension at high concentrations. Powder Technol. 2 (1), 4351.CrossRefGoogle Scholar
Delong, S., Balboa Usabiaga, F. & Donev, A. 2015 Brownian dynamics of confined rigid bodies. J. Chem. Phys. 143 (14), 144107.CrossRefGoogle ScholarPubMed
Di Felice, R. 1999 The sedimentation velocity of dilute suspensions of nearly monosized spheres. Intl J. Multiphase Flow 25 (4), 559574.CrossRefGoogle Scholar
Fernandes, P.C., Ern, P., Risso, F. & Magnaudet, J. 2005 On the zigzag dynamics of freely moving axisymmetric bodies. Phys. Fluids 17 (9), 098107098112.CrossRefGoogle Scholar
Garside, J. & Al-Dibouni, M.R. 1977 Velocity–voidage relationships for fluidization and sedimentation in solid–liquid systems. Indust. Engng Chem. Proc. Design Develop. 16 (2), 206214.CrossRefGoogle Scholar
Guazzelli, É., Hinch, J. 2011 Fluctuations and instability in sedimentation. Annu. Rev. Fluid Mech. 43 (1), 97116.CrossRefGoogle Scholar
Hamid, A., Molina, J.J. & Yamamoto, R. 2013 Sedimentation of non-Brownian spheres at high volume fractions. Soft Matter 9 (42), 1005610068.CrossRefGoogle Scholar
Hamid, A. & Yamamoto, R. 2013 a Anisotropic velocity fluctuations and particle diffusion in sedimentation. J. Phys. Soc. Japan 82 (2), 024004.CrossRefGoogle Scholar
Hamid, A. & Yamamoto, R. 2013 b Direct numerical simulations of anisotropic diffusion of spherical particles in sedimentation. Phys. Rev. E: Stat. Nonlinear Soft Matter Phys. 87 (2), 022310.CrossRefGoogle ScholarPubMed
Hayakawa, H. & Ichiki, K. 1995 Statistical theory of sedimentation of disordered suspensions. Phys. Rev. E 51 (5), R3815.CrossRefGoogle ScholarPubMed
Hinch, E.J. 1988 Sedimentation of small particles. In Disorder and Mixing: Convection, Diffusion and Reaction in Random Materials and Processes (ed. E. Guyon, J.-P. Nadal & Y. Pomeau), pp. 153162. Springer.CrossRefGoogle Scholar
van der Hoef, M.A., van Sint Annaland, M., Deen, N.G. & Kuipers, J.A.M. 2008 Numerical simulation of dense gas–solid fluidized beds: a multiscale modeling strategy. Annu. Rev. Fluid Mech. 40 (1), 4770.CrossRefGoogle Scholar
Hölzer, A. & Sommerfeld, M. 2009 Lattice Boltzmann simulations to determine drag, lift and torque acting on non-spherical particles. Comput. Fluids 38 (3), 572589.CrossRefGoogle Scholar
Ji, Z., Xiong, Z., Wu, X., Chen, H. & Wu, H. 2009 Experimental investigations on a cyclone separator performance at an extremely low particle concentration. Powder Technol. 191 (3), 254259.CrossRefGoogle Scholar
Kallemov, B., Bhalla, A., Griffith, B. & Donev, A. 2016 An immersed boundary method for rigid bodies. Commun. App. Maths Comput. Sci. 11 (1), 79141.CrossRefGoogle Scholar
Kuusela, E. 2005 Steady State Sedimentation of Non-Brownian Particles with Finite Reynolds Number. Helsinki University of Technology.Google Scholar
Ladd, A.J.C. 1993 Dynamical simulations of sedimenting spheres. Phys. Fluids A: Fluid Dyn. 5 (2), 299310.CrossRefGoogle Scholar
Ladd, A.J.C. 1996 Hydrodynamic screening in sedimenting suspensions of non-Brownian spheres. Phys. Rev. Lett. 76 (8), 13921395.CrossRefGoogle ScholarPubMed
Ladd, A.J.C. 1997 Sedimentation of homogeneous suspensions of non-Brownian spheres. Phys. Fluids 9 (3), 491499.CrossRefGoogle Scholar
Li, G., Maricherla, D., Singh, K., Pang, S.-S. & John, M. 2006 Effect of fiber orientation on the structural behavior of FRP wrapped concrete cylinders. Compos. Struct. 74 (4), 475483.CrossRefGoogle Scholar
Li, H. & Botto, L. 2024 Hindered settling of log-normally distributed particulate suspensions: theoretical models vs. Stokesian simulations. arXiv preprint arXiv: 2404.17392.CrossRefGoogle Scholar
Lockett, M.J. & Bassoon, K.S. 1979 Sedimentation of binary particle mixtures. Powder Technol. 24 (1), 17.CrossRefGoogle Scholar
Lu, J., Xu, X., Zhong, S., Ni, R. & Tryggvason, G. 2023 The dynamics of suspensions of prolate spheroidal particles – effects of volume fraction. Intl J. Multiphase Flow 165, 104469.CrossRefGoogle Scholar
Mallavajula, R.K., Koch, D.L. & Archer, L.A. 2013 Intrinsic viscosity of a suspension of cubes. Phys. Rev. E: Stat. Nonlinear Soft Matter Phys. 88 (5), 052302.CrossRefGoogle ScholarPubMed
Mathai, V., Zhu, X., Sun, C. & Lohse, D. 2017 Mass and moment of inertia govern the transition in the dynamics and wakes of freely rising and falling cylinders. Phys. Rev. Lett. 119 (5), 054501.CrossRefGoogle ScholarPubMed
Maxey, M.R. & Patel, B.K. 2001 Localized force representations for particles sedimenting in Stokes flow. Intl J. Multiphase Flow 27 (9), 16031626.CrossRefGoogle Scholar
Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H. & Teller, E. 1953 Equation of state calculations by fast computing machines. J. Chem. Phys. 21 (6), 10871092.CrossRefGoogle Scholar
Nicolai, H. & Guazzelli, E. 1995 Effect of the vessel size on the hydrodynamic diffusion of sedimenting spheres. Phys. Fluids 7 (1), 35.CrossRefGoogle Scholar
Nicolai, H., Herzhaft, B., Hinch, E.J., Oger, L. & Guazzelli, E. 1995 Particle velocity fluctuations and hydrodynamic self-diffusion of sedimenting non-Brownian spheres. Phys. Fluids 7 (1), 1223.CrossRefGoogle Scholar
O’Melia, C.R. 1998 Coagulation and sedimentation in lakes, reservoirs and water treatment plants. Water Sci. Technol. 37 (2), 129135.CrossRefGoogle Scholar
Padding, J.T. & Louis, A.A. 2008 Interplay between hydrodynamic and Brownian fluctuations in sedimenting colloidal suspensions. Phys. Rev. E: Stat. Nonlinear Soft Matter Phys. 77 (1), 011402.CrossRefGoogle ScholarPubMed
Phillips, R.J., Brady, J.F. & Bossis, G. 1988 Hydrodynamic transport properties of hard-sphere dispersions. I. Suspensions of freely mobile particles. Phys. Fluids 31 (12), 34623472.CrossRefGoogle Scholar
Rahmani, M. & Wachs, A. 2014 Free falling and rising of spherical and angular particles. Phys. Fluids 26 (8), 083301083324.CrossRefGoogle Scholar
Richardson, J.F. & Zaki, W.N. 1954 The sedimentation of a suspension of uniform spheres under conditions of viscous flow. Chem. Engng Sci. 3 (2), 6573.CrossRefGoogle Scholar
Richardson, J.F. & Zaki, W.N. 1997 Sedimentation and fluidisation: Part I. Chem. Engng Res. Design 75, S82S100.CrossRefGoogle Scholar
Rotne, J. & Prager, S. 1969 Variational treatment of hydrodynamic interaction in polymers. J. Chem. Phys. 50 (11), 48314837.CrossRefGoogle Scholar
Segre, P.N., Herbolzheimer, E. & Chaikin, P.M. 1997 Long-range correlations in sedimentation. Phys. Rev. Lett. 79 (13), 25742577.CrossRefGoogle Scholar
Seyed-Ahmadi, A. & Wachs, A. 2019 Dynamics and wakes of freely settling and rising cubes. Phys. Rev. Fluids 4 (7), 074304.CrossRefGoogle Scholar
Seyed-Ahmadi, A. & Wachs, A. 2021 Sedimentation of inertial monodisperse suspensions of cubes and spheres. Phys. Rev. Fluids 6 (4), 044306.CrossRefGoogle Scholar
Sundaram, S. & Collins, L.R. 1997 Collision statistics in an isotropic particle-laden turbulent suspension. Part 1. Direct numerical simulations. J. Fluid Mech. 335, 75109.CrossRefGoogle Scholar
Tinland, B., Meistermann, L. & Weill, G. 2000 Simultaneous measurements of mobility, dispersion, and orientation of DNA during steady-field gel electrophoresis coupling a fluorescence recovery after photobleaching apparatus with a fluorescence detected linear dichroism setup. Phys. Rev. E 61 (6), 69936998.CrossRefGoogle ScholarPubMed
Van Der Lans, R.P., Pedersen, L.T., Jensen, A., Glarborg, P. & Dam-Johansen, K. 2000 Modelling and experiments of straw combustion in a grate furnace. Biomass Bioenergy 19 (3), 199208.CrossRefGoogle Scholar
Wajnryb, E., Mizerski, K.A., Zuk, P.J. & Szymczak, P. 2013 Generalization of the Rotne–Prager–Yamakawa mobility and shear disturbance tensors. J. Fluid Mech. 731, R3.CrossRefGoogle Scholar
Wang, L.-P., Wexler, A.S. & Zhou, Y. 2000 Statistical mechanical description and modelling of turbulent collision of inertial particles. J. Fluid Mech. 415, 117153.CrossRefGoogle Scholar
Wang, M. & Brady, J.F. 2015 Short-time transport properties of bidisperse suspensions and porous media: a Stokesian dynamics study. J. Chem. Phys. 142 (9), 094901094923.CrossRefGoogle ScholarPubMed
Yamamoto, R., Molina, J.J. & Nakayama, Y. 2021 Smoothed profile method for direct numerical simulations of hydrodynamically interacting particles. Soft Matter 17 (16), 42264253.CrossRefGoogle ScholarPubMed
Yan, W. & Blackwell, R. 2021 Kernel aggregated fast multipole method: efficient summation of Laplace and Stokes kernel functions. Adv. Comput. Math. 47, 6995.CrossRefGoogle Scholar
Yao, Y., Criddle, C.S. & Fringer, O.B. 2021 The effects of particle clustering on hindered settling in high-concentration particle suspensions. J. Fluid Mech. 920, A40.CrossRefGoogle Scholar
Zaidi, A.A. 2018 Particle velocity distributions and velocity fluctuations of non-Brownian settling particles by particle-resolved direct numerical simulation. Phys. Rev. E 98 (5), 053103.CrossRefGoogle Scholar
Zastawny, M., Mallouppas, G., Zhao, F. & van Wachem, B. 2012 Derivation of drag and lift force and torque coefficients for non-spherical particles in flows. Intl J. Multiphase Flow 39, 227239.CrossRefGoogle Scholar
Zhong, H., Chen, S. & Lee, C. 2011 Experimental study of freely falling thin disks: transition from planar zigzag to spiral. Phys. Fluids 23 (1), 108152.CrossRefGoogle Scholar
Zhong, W., Yu, A., Liu, X., Tong, Z. & Zhang, H. 2016 DEM/CFD-DEM modelling of non-spherical particulate systems: theoretical developments and applications. Powder Technol. 302, 108152.CrossRefGoogle Scholar
Supplementary material: File

Kundu et al. supplementary material movie 1

Sedimenting cubes at volume fraction 0.5 in a domain with periodic boundary conditions. From left to right: top view, lateral view and tilted view.
Download Kundu et al. supplementary material movie 1(File)
File 14.2 MB
Supplementary material: File

Kundu et al. supplementary material movie 2

Bidisperse suspension at volume fraction= 0.03 sedimenting in a domain with periodic boundary conditions.The colors represent the difference from the mean displacement along the vertical direction.
Download Kundu et al. supplementary material movie 2(File)
File 43.3 MB
Supplementary material: File

Kundu et al. supplementary material movie 3

Bidisperse suspension at volume fraction= 0.23 sedimenting in a domain with periodic boundary conditions.%"The colors represent the difference from the mean displacement along the vertical direction.
Download Kundu et al. supplementary material movie 3(File)
File 32.9 MB
Supplementary material: File

Kundu et al. supplementary material movie 4

Bidisperse suspension at volume fraction= 0.36 sedimenting in a domain with periodic boundary conditions.%"The colors represent the difference from the mean displacement along the vertical direction.
Download Kundu et al. supplementary material movie 4(File)
File 23.2 MB
Supplementary material: File

Kundu et al. supplementary material 5

Kundu et al. supplementary material
Download Kundu et al. supplementary material 5(File)
File 357.2 KB
Supplementary material: File

Kundu et al. supplementary material 6

Kundu et al. supplementary material
Download Kundu et al. supplementary material 6(File)
File 2 KB