Published online by Cambridge University Press: 10 January 2019
We discuss two distinct spatial structures of vortex streets. The ‘conventional mushroom’ structure is commonly discussed in many experimental studies, and the exotic ‘separated rows’ structure is characterized by a thin layer of irrotational fluid between two rows of vortices. In a two-dimensional soap film channel, we generate the exotic vortex arrangement by using triangular objects. This setting allows us to vary the thickness of boundary layers and their separation distance independently. We find that the separated rows structure appears only when the boundary layer is thinner than 40 % of the separation distance. We also discuss two physical mechanisms of the breakdown of vortex structures. The conventional mushroom structure decays due to the mixing, and the separated rows structure decays because its arrangement is hydrodynamically unstable.