Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-29T13:30:49.323Z Has data issue: false hasContentIssue false

Self-sustained oscillation of a jet impinging upon a Helmholtz resonator

Published online by Cambridge University Press:  21 April 2006

W. M. Jungowski
Affiliation:
Max-Planck-Institut für Strömungsforschung, D-3400 Göttingen, Bunsenstr. 10, FR Germany Presently research scientist NOVA/Husky Research Corporation, Calgary, Canada.
G. Grabitz
Affiliation:
Max-Planck-Institut für Strömungsforschung, D-3400 Göttingen, Bunsenstr. 10, FR Germany

Abstract

A planar, sonic, underexpanded air jet induced strong and self-sustained flow oscillation. The jet was bounded by two parallel walls extending between the nozzle and the Helmholtz resonator opposite. This oscillation was characterized by large pressure amplitudes in the resonator and periodic displacement of a detached shock wave. The observed phenomena were in some measure similar to those occurring with Hartmann-Sprenger tubes. Based on the experimental results, including Mach-Zehnder interferograms and fluctuating pressure and velocity measurements, the properties of the oscillation have been described and a model for theoretical analysis has been established. Experimental and numerical investigations have made possible a description of the oscillation mechanism, which is of the relaxation type.

Type
Research Article
Copyright
© 1987 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Boucher, H. & Brun, E. 1958 Contribution a l’étude des ultrasons aeriens: production et application. Publication Scientifiques et Techniques du Ministère de L'Air no. N.T. 79.
Brocher, E. & Ardissone, J.-P. 1983 Heating characteristics of a new type of Hartmann-Sprenger tube. Intl J. Heat Fluid Flow 4, 97102.Google Scholar
Brocher, E., Maresca, A. & Bournay, M.-H. 1970 Fluid dynamics of the resonance tube. J. Fluid Mech. 43, 369384.Google Scholar
Brocher, E. & Pinna, G. 1980 Aeroacoustical phenomena in a horn excited by a Hartmann-Sprenger tube. Acustica 45, 180189.Google Scholar
Hankey, W. L. & Shang, J. S. 1980 Analyses of pressure oscillations in an open cavity. AIAA J. 18, 892898.Google Scholar
Hartmann, J. & Trolle, B. 1930 Modus operandi of the air-jet pulsator. Dan. Mat. Fys. Medd. 10, no. 4.Google Scholar
Iwamoto, J., Kobashi, M., Ariga, I. & Watanabe, I. 1976 On thermal effects of Hartmann-Sprenger tubes with various internal geometries. Presented at Euromech 73, Oscillating Flows in Ducts, Aix-en Provence, 13–15 April.
Jungowski, W. M. 1978 Some self induced supersonic flow oscillations. Prog. Aero. Sci. 18, 151175.Google Scholar
Jungowski, W. M. 1982 Self-sustained oscillations of gas flows as sources of discrete frequency noise. Fortschritte der Akustik - FASE/DAGA ’82, pp. 7991.
Jungowski, W. M. & Meier, G. E. A. 1984 Planar jets impinging on various obstacles and some modes of flow oscillation. Mitteilungen aus dem Max-Planck-Institut für Strömungsforschung Nr. 78.
Kawahashi, M., Bobone, R. & Brocher, E. 1984 Oscillation modes in single-step Hartmann-Sprenger tubes. J. Acoust. Soc. Am. 75, 780784.Google Scholar
Kawahashi, M., Sasaki, S., Anzai, H. & Suzuki, M. 1974 Unsteady, one-dimensional flow in resonance tube (with wall friction, heat transfer and interaction on a contact surface). Bull JSME 17, 15551563.Google Scholar
Kawahashi, M. & Suzuki, M. 1974 Studies on resonance tube with a secondary resonator. Bull. JSME 17, 595602.Google Scholar
Kawahashi, M. & Suzuki, M. 1979 Generative mechanism of air column oscillations in a Hartmann-Sprenger tube excited by an air jet issuing from a convergent nozzle. Z. Angew. Math. Phys. 30, 797810.Google Scholar
Levy, L. L. 1978 Experimental and computational steady and unsteady transonic flows about a thick airfoil. AIAA J. 16, 564572.Google Scholar
Magnus, K. 1961 Schwingungen. Stuttgart: B. G. Teubner.
MØrch, K. A. 1964 A theory for the mode of operation of the Hartmann air jet generator. J. Fluid Mech. 20, 141159.Google Scholar
Przirembel, C. E. G. & Fletcher, L. S. 1978 Aerothermodynamic characteristics of a resonance tube driven by a subsonic jet. AIAA J. 16, 184186.Google Scholar
Przirembel, C. E. G., Fletcher, L. S. & Wolf, D. E. 1977 Thermodynamic characteristics of a blunt two-dimensional resonance tube. AIAA J. 15, 905906.Google Scholar
Rockwell, D. 1983 Oscillations of impinging shear layers. AIAA J. 21, 645664.Google Scholar
Rockwell, D. & Naudascher, E. 1979 Self-sustained oscillations of impinging free shear layers. Ann. Rev. Fluid Mech. 11, 6794.Google Scholar
Rozenberg, L. D. (ed.) 1969 Sources of High-Intensity Ultrasound, pp. 1162. Plenum.
Sarohia, V. & Back, L. H. 1979 Experimental investigation of flow and heating in a resonance tube. J. Fluid Mech. 94, 649672.Google Scholar
Seegmiller, H. L., Marvin, J. G. Levy, L, L. 1976 Steady and unsteady transonic flow. AIAA J. 16, 12621270.Google Scholar
Smith, T. J. B. & Powell, A. 1964 Experiments concerning the Hartmann whistle. Dept. of Engin., Univ. of Calif., Rep. 64–42.Google Scholar
Sprenger, H. 1954 Über thermische Effekte in Resonanzrohren. Mitteilungen aus dem Institut für Aerodynamik an der E.T.H. Zürich, Nr. 21, pp. 1835.
Stasicki, B. & Meier, G. E. A. 1976 Konstanttemperatur-Anemometersystem ASM 1. Max-Planck-Institut für Strömungsforschung, Göttingen, Ber. 103.
Thompson, P. A. 1964 Jet-driven resonance tube. AIAA J. 2, 12301233.Google Scholar
Vrebalovich, T. 1962 Resonance tubes in a supersonic flow field. Jet. Prop. Lab., Cal. Inst. of Techn., Pasadena, T.R. no. 32–37d.