Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-10T00:00:23.933Z Has data issue: false hasContentIssue false

Self-similar dynamics of two-phase flows injected into a confined porous layer

Published online by Cambridge University Press:  02 September 2019

Zhong Zheng*
Affiliation:
Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, UK BP Institute, University of Cambridge, CambridgeCB3 0EZ, UK Department of Earth Sciences, University of Cambridge, Cambridge CB3 0EZ, UK Sichuan Energy Internet Research Institute, Tsinghua University, Chengdu 610213, China Energy Strategy and Low-Carbon Development Research Center, Sichuan Energy Internet Research Institute, Tsinghua University, Chengdu 610213, China
Jerome A. Neufeld
Affiliation:
Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, UK BP Institute, University of Cambridge, CambridgeCB3 0EZ, UK Department of Earth Sciences, University of Cambridge, Cambridge CB3 0EZ, UK
*
Email address for correspondence: [email protected]

Abstract

We study the dynamics of two-phase flows injected into a confined porous layer. A model is derived to describe the evolution of the fluid–fluid interface, where the effective saturation of the injected fluid is zero. The flow is driven by pressure gradients due to injection, the buoyancy due to density contrasts and the interfacial tension between the injected and ambient fluids. The saturation field is then computed after the interface evolution is obtained. The results demonstrate that the flow behaviour evolves from early-time unconfined to late-time confined behaviours. In particular, at early times, the influence of capillary forces drives fluid flow and produces a new self-similar spreading behaviour in the unconfined limit that is distinct from the gravity current solution. At late times, we obtain two new similarity solutions, a modified shock solution and a compound wave solution, in addition to the rarefaction and shock solutions in the sharp-interface limit. A schematic regime diagram is also provided, which summarises all possible similarity solutions and the time transitions between them for the partially saturating flows resulting from fluid injection into a confined porous layer. Three dimensionless control parameters are identified and their influence on the fluid flow is also discussed, including the viscosity ratio, the pore-size distribution and the relative contributions of capillary and buoyancy forces. To underline the relevance of our results, we also briefly describe the implications of the two-phase flow model to the geological storage of $\text{CO}_{2}$, using representative geological parameters from the Sleipner and In Salah sites.

Type
JFM Papers
Copyright
© 2019 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acton, J. M., Huppert, H. E. & Worster, M. G. 2001 Two-dimensional viscous gravity currents flowing over a deep porous medium. J. Fluid Mech. 440, 359380.10.1017/S0022112001004700Google Scholar
Bachu, S. & Bennion, D. B. 2009 Interfacial tension between CO2 , freshwater, and brine in the range of pressure from (2 to 27) MPa, temperature from (20to125) °C, and water salinity from (0to334 000) mg⋅L-1 . J. Chem. Engng Data 54, 765775.Google Scholar
Barenblatt, G. I. 1952 On some unsteady fluid and gas motions in a porous medium (in Russian). Prikl. Mat. Mekh. 16, 6778.Google Scholar
Bear, J. 1972 Dynamics of Fluids in Porous Media. Elsevier.Google Scholar
Bennion, B. & Bachu, S.2005 Relative permeability characteristics for supercritical $\text{CO}_{2}$ displacing water in a variety of potential sequestration zones in western Canada sedimentary basin, SPE Annual Technical Conference and Exhibition Dallas, Texas (SPE 95547). Society of Petroleum Engineers.10.2118/95547-MSGoogle Scholar
Boussinesq, J. V. 1904 Recherches theoretique sur l’ecoulement des nappes d’eau infiltrees dans le sol et sur le debit des sources. J. Math. Pure Appl. 10, 578.Google Scholar
Brooks, R. H. & Corey, A. T. 1964 Hydraulic properties of porous media. In Hydrology Papers 3. Colorado State University.Google Scholar
Buckley, S. E. & Leverett, M. C. 1942 Mechanism of fluid displacement in sands. Trans. AIME 146, 107116.Google Scholar
Cowton, L. R., Neufeld, J. A., White, N. J., Bickle, M. J., Williams, G. A., White, J. C. & Chadwick, R. A. 2018 Benchmarking of vertically-integrated CO2 flow simulations at the Sleipner Field, North Sea. Earth Planet. Sci. Lett. 491, 121133.10.1016/j.epsl.2018.03.038Google Scholar
de Gennes, P.-G., Brochard-Wyart, F. & Quere, D. 2004 Capillarity and Wetting Phenomena. Springer.10.1007/978-0-387-21656-0Google Scholar
EPA 2010 Issues concerning the use of horizontal wells in the injection of carbon dioxide for geologic sequestration Tech. Rep. Office of Water, United States Environmental Protection Agency.Google Scholar
Farcas, A. & Woods, A. W. 2009 The effect of drainage on the capillary retention of CO2 in a layered permeable rock. J. Fluid Mech. 618, 349359.10.1017/S0022112008004400Google Scholar
Gasda, S. E., Bachu, S. & Celia, M. A. 2004 Spatial characterization of the location of potentially leaky wells penetrating a deep saline aquifer in a mature sedimentary basin. Environ. Geol. 46, 707720.10.1007/s00254-004-1073-5Google Scholar
Gasda, S. E., Nordbotten, J. M. & Celia, M. A. 2009 Vertical equilibrium with sub-scale analytical methods for geological CO2 sequestration. Comput. Geosci. 13, 469481.10.1007/s10596-009-9138-xGoogle Scholar
Golding, M. J., Huppert, H. E. & Neufeld, J. A. 2013 The effects of capillary forces on the axisymmetric propagation of two-phase, constant-flux gravity currents in porous media. Phys. Fluids 25, 036602.10.1063/1.4793748Google Scholar
Golding, M. J., Huppert, H. E. & Neufeld, J. A. 2017 Two-phase gravity currents resulting from the release of a fixed volume of fluid in a porous medium. J. Fluid Mech. 832, 550577.10.1017/jfm.2017.437Google Scholar
Golding, M. J., Neufeld, J. A., Hesse, M. A. & Huppert, H. E. 2011 Two-phase gravity currents in porous media. J. Fluid Mech. 678, 248270.10.1017/jfm.2011.110Google Scholar
Guo, B., Zheng, Z., Bandilla, K. W., Celia, M. A. & Stone, H. A. 2016a Flow regime analysis for geologic CO2 sequestration and other subsurface fluid injections. Intl J. Greenh. Gas Control 53, 284291.10.1016/j.ijggc.2016.08.007Google Scholar
Guo, B., Zheng, Z., Celia, M. A. & Stone, H. A. 2016b Axisymmetric flows from fluid injection into a confined porous medium. Phys. Fluids 28, 022107.10.1063/1.4941400Google Scholar
Hesse, M. A., Orr, F. M. Jr & Tchelepi, H. A. 2008 Gravity currents with residual trapping. J. Fluid Mech. 611, 3560.10.1017/S002211200800219XGoogle Scholar
Hesse, M. A. & Woods, A. W. 2010 Buoyant disposal of CO2 during geological storage. Geophys. Res. Lett. 37, L01403.10.1029/2009GL041128Google Scholar
Huppert, H. E. & Neufeld, J. A. 2014 The fluid mechanics of carbon dioxide sequestration. Annu. Rev. Fluid Mech. 46, 255272.10.1146/annurev-fluid-011212-140627Google Scholar
Huppert, H. E. & Woods, A. W. 1995 Gravity driven flows in porous layers. J. Fluid Mech. 292, 5569.10.1017/S0022112095001431Google Scholar
Juanes, R., MacMinn, C. W. & Szulczewski, M. L. 2010 The footprint of the CO2 plume during carbon dioxide storage in saline aquifers: storage efficiency for capillary trapping at the basin scale. Trans. Porous Med. 82, 1930.Google Scholar
Kochina, I. N., Mikhailov, N. N. & Filinov, M. V. 1983 Groundwater mound damping. Intl J. Engng Sci. 21, 413421.Google Scholar
Krevor, S. C. M., Pini, R., Zuo, L. & Benson, S. M. 2012 Relative permeability and trapping of CO2 and water in sandstone rocks at reservoir conditions. Water Resour. Res. 48, W02532.10.1029/2011WR010859Google Scholar
Kurganov, A. & Tadmor, E. 2000 New high-resolution central schemes for nonlinear conservation laws and convection–diffusion equations. J. Comput. Phys. 160, 241282.10.1006/jcph.2000.6459Google Scholar
Lake, L. W. 1989 Enhanced Oil Recovery. Prentice Hall.Google Scholar
LeVeque, R. J. 2002 Finite Volume Methods for Hyperbolic Problems. Cambridge University Press.10.1017/CBO9780511791253Google Scholar
Leverett, M. C. 1941 Capillary behavior in porous solids. Trans. AIME 142, 152169.Google Scholar
Li, K. & Horne, R. N. 2006 Comparison of methods to calculate relative permeability from capillary pressure in consolidated water–wet porous media. Water Resour. Res. 42, W06405.Google Scholar
Liu, Y., Zheng, Z. & Stone, H. A. 2017 The influence of capillary effects on the drainage of a viscous gravity current into a deep porous medium. J. Fluid Mech. 817, 514559.10.1017/jfm.2017.125Google Scholar
Lyle, S., Huppert, H. E., Hallworth, M., Bickle, M. & Chadwick, A. 2005 Axisymmetric gravity currents in a porous medium. J. Fluid Mech. 543, 293302.10.1017/S0022112005006713Google Scholar
MacMinn, C. W., Szulczewski, M. L. & Juanes, R. 2010 CO2 migration in saline aquifers. Part 1. Capillary trapping under slope and groundwater flow. J. Fluid Mech. 662, 329351.10.1017/S0022112010003319Google Scholar
MacMinn, C. W., Szulczewski, M. L. & Juanes, R. 2011 CO2 migration in saline aquifers. Part 2. Combined capillary and solubility trapping. J. Fluid Mech. 688, 321351.10.1017/jfm.2011.379Google Scholar
Neufeld, J. A., Vella, D. & Huppert, H. E. 2009 The effect of a fissure on storage in a porous medium. J. Fluid Mech. 639, 239259.10.1017/S0022112009991030Google Scholar
Neufeld, J. A., Vella, D., Huppert, H. E. & Lister, J. R. 2011 Leakage from gravity currents in a porous medium. Part 1. A localized sink. J. Fluid Mech. 666, 391413.10.1017/S002211201000488XGoogle Scholar
Nilsen, H. M., Lie, K.-A. & Andersen, O. 2016 Fully-implicit simulation of vertical-equilibrium models with hysteresis and capillary fringe. Comput. Geosci. 20, 4967.10.1007/s10596-015-9547-yGoogle Scholar
Nordbotten, J. M. & Celia, M. A. 2006 Similarity solutions for fluid injection into confined aquifers. J. Fluid Mech. 561, 307327.10.1017/S0022112006000802Google Scholar
Nordbotten, J. M. & Dahle, H. K. 2011 Impact of the capillary fringe in vertically integrated models for CO2 storage. Water Resour. Res. 47, W02537.10.1029/2009WR008958Google Scholar
Pegler, S. S., Huppert, H. E. & Neufeld, J. A. 2014 Fluid injection into a confined porous layer. J. Fluid Mech. 745, 592620.10.1017/jfm.2014.76Google Scholar
Petropoulos, G. & Srivastava, P. 2016 Sensitivity Analysis in Earth Observation Modelling. Elsevier.Google Scholar
Phillips, O. M. 1991 Flow and Reactions in Permeable Rocks. Cambridge University Press.Google Scholar
Pritchard, D., Woods, A. W. & Hogg, A. J. 2001 On the slow draining of a gravity current moving through a layered permeable medium. J. Fluid Mech. 444, 2347.10.1017/S002211200100516XGoogle Scholar
Taghavi, S. M., Martinez, D. M. & Frigaard, I. A. 2009 Buoyancy-dominated displacement flows in near-horizontal channels: the viscous limit. J. Fluid Mech. 639, 135.10.1017/S0022112009990620Google Scholar
Vella, D., Neufeld, J. A., Huppert, H. E. & Lister, J. R. 2011 Leakage from gravity currents in a porous medium. Part 2. A line sink. J. Fluid Mech. 666, 414427.10.1017/S002211201000491XGoogle Scholar
Woods, A. W. & Farcas, A. 2009 Capillary entry pressure and the leakage of gravity currents through a sloping layered permeable rock. J. Fluid Mech. 618, 361379.10.1017/S0022112008004527Google Scholar
Yu, Y. E., Zheng, Z. & Stone, H. A. 2017 Flow of a gravity current in a porous medium accounting for drainage from a permeable substrate and an edge. Phys. Rev. Fluids 2, 074101.10.1103/PhysRevFluids.2.074101Google Scholar
Zheng, Z., Guo, B., Christov, I. C., Celia, M. A. & Stone, H. A. 2015 Flow regimes for fluid injection into a confined porous medium. J. Fluid Mech. 767, 881909.10.1017/jfm.2015.68Google Scholar
Zheng, Z., Ronge, L. & Stone, H. A. 2015 Viscous fluid injection into a confined channel. Phys. Fluids 27, 062105.10.1063/1.4922736Google Scholar
Zheng, Z., Shin, S. & Stone, H. A. 2015 Converging gravity currents over a porous substrate. J. Fluid Mech. 778, 669690.10.1017/jfm.2015.406Google Scholar
Zheng, Z., Soh, B., Huppert, H. E. & Stone, H. A. 2013 Fluid drainage from the edge of a porous reservoir. J. Fluid Mech. 718, 558568.10.1017/jfm.2012.630Google Scholar