Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-28T21:43:07.809Z Has data issue: false hasContentIssue false

Second-order Wagner theory for two-dimensional water-entry problems at small deadrise angles

Published online by Cambridge University Press:  23 January 2007

J. M. OLIVER*
Affiliation:
School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, UK

Abstract

The theory of Wagner from 1932 for the normal symmetric impact of a two-dimensional body of small deadrise angle on a half-space of ideal and incompressible liquid is extended to derive the second-order corrections for the locations of the higher-pressure jet-root regions and for the upward force on the impactor using a systematic matched-asymptotic analysis. The second-order predictions for the upward force on an entering wedge and parabola are compared with numerical and experimental data, respectively, and it is concluded that a significant improvement in the predictive capability of Wagner's theory is afforded by proceeding to second order.

Type
Papers
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Campbell, I. M. C. & Weynberg, P. A. 1980 Measurements of parameters affecting slamming. Rep. 440, Wolfson Unit of Marine Technology, Tech. Rep. Centre No. OT-R-8042, Southampton, UK.Google Scholar
Cointe, R. 1989 Two-dimensional water-solid impact. Trans. ASME: J. Offshore Mech. Arc. Engng 111, 109114.Google Scholar
Cointe, R. & Armand, J.-L. 1987 Hydrodynamic impact analysis of a cylinder. Trans. ASME: J. Offshore Mech. Arc. Engng 109, 237243.Google Scholar
Dobrovol'skaya, Z. N. 1969 On some problems of similarity flow of fluid with a free surface. J. Fluid Mech. 36, 805829.CrossRefGoogle Scholar
Faltinsen, O. M. 1990 Sea Loads on Ships and Offshore Structures. Cambridge University Press.Google Scholar
Faltinsen, O. M. 2002 On the entry of a wedge with finite deadrise angle. J. Ship Res. 46, 3951.CrossRefGoogle Scholar
Fontaine, E. & Cointe, R. 1998 Asymptotic theories of incompressible water entry. NASA no.19980020557, France.Google Scholar
Fraenkel, L. E. & Keady, G. 2004 On the entry of a wedge into water: the thin wedge and an all-purpose boundary layer equation. J. Engng Maths 48, 219252.CrossRefGoogle Scholar
Fraenkel, L. E. & McLeod, J. B. 1997 Some results for the entry of a wedge into water. Phil. Trans. R. Soc. Lond. A 355, 523535.CrossRefGoogle Scholar
Gakhov, F. D. 1966 Boundary Value Problems. Dover.CrossRefGoogle Scholar
Greenhow, M. 1987 Wedge entry into initially calm water. Appl. Ocean Res. 9, 214223.CrossRefGoogle Scholar
Howison, S. D., Ockendon, J. R. & Oliver, J. M. 2002 Deep- and shallow-water slamming at small and zero deadrise angles. J. Engng Maths 42, 373388.CrossRefGoogle Scholar
Howison, S. D., Ockendon, J. R. & Oliver, J. M. 2004 Oblique slamming, planing and skimming. J. Engng Maths 48, 321337.CrossRefGoogle Scholar
Howison, S. D., Ockendon, J. R., Oliver, J. M., Purvis, R. & Smith, F. T. 2005 Droplet impact on a thin fluid layer. J. Fluid Mech. 542, 123.CrossRefGoogle Scholar
Howison, S. D., Ockendon, J. R. & Wilson, S. K. 1991 Incompressible water-entry problems at small deadrise angles. J. Fluid Mech. 222, 215230.CrossRefGoogle Scholar
von Kármán, T. 1929 The impact of seaplane floats during landing. NACA TN 321, October, Washington.Google Scholar
Korobkin, A. A. 1982 Formulation of the penetration problem as a variational inequality. Din. Sploshnoi Sredy 58, 7379.Google Scholar
Korobkin, A. A. 1996 Water impact problems in ship hydrodynamics. Adv. Mar. Hyrodyn. 5, 323371.Google Scholar
Korobkin, A. A. 2004 Analytical models of water impact. Eur. J. App. Maths 15, 821838.CrossRefGoogle Scholar
Korobkin, A. A. 2006 Second-order Wagner theory of wave impact. J. Engng Maths (submitted).CrossRefGoogle Scholar
Korobkin, A. A. & Pukhnachov, V. V. 1988 Initial stage of water impact. Annu Rev. Fluid Mech. 20, 159185.CrossRefGoogle Scholar
Korobkin, A. A. & Scolan, Y.-M. 2006 Three-dimensional theory of water impact. Part 2. Linearized Wagner problem. J. Fluid Mech. 549, 343373.CrossRefGoogle Scholar
Logvinovich, G. V. 1996 Hydrodynamics of Flows with Free Boundaries. Naukova Dumka.Google Scholar
Mei, X., Liu, Y. & Yue, D. K. P. 1999 On water impact of general two-dimensional sections. Appl. Ocean Res. 21, 115.CrossRefGoogle Scholar
Mizoguchi, A. & Tanizawa, K. 1996 Impact wave loads due to slamming – a review. Ship Tech. Res. 43, 139151.Google Scholar
Oliver, J. M. 2002 Water entry and related problems. DPhil thesis, University of Oxford.Google Scholar
Scolan, Y.-M. & Korobkin, A. A. 2001 Three-dimensional theory of water impact. Part 1. Inverse Wagner problem. J. Fluid Mech. 440, 293326.CrossRefGoogle Scholar
Vanden-Broeck, J.-M. & Keller, J. B. 1993 Pouring flows with separation. Phys. Fluids A1, 156159.Google Scholar
Vorus, W. S. 1996 A flat cylinder theory for vessel impact and steady planing resistance. J. Ship Res. 40, 89106.CrossRefGoogle Scholar
Wagner, H. 1932 Über stoß- und gleitvorgänge an der oberfläche von flüssigkeiten (Phenomena associated with impacts and sliding on liquid surfaces). Z. Angew. Math. Mech. 12, 193215.CrossRefGoogle Scholar
Wilson, S. K. 1989 The mathematics of ship slamming. DPhil thesis, University of Oxford.Google Scholar
Zhao, R. & Faltinsen, O. 1993 Water-entry of two-dimensional bodies. J. Fluid Mech. 246, 593–212.CrossRefGoogle Scholar
Zhao, R., Faltinsen, O. & Aarsnes, J. 1996 Water entry of arbitrary two-dimensional sections with and without separation. Proc. 21 stSymptosium on Naval Hydrodynamics, pp. 118–133, Trondheim, Norway.Google Scholar