No CrossRef data available.
Article contents
Secondary flows drive triboelectric powder charging in pneumatic conveying
Published online by Cambridge University Press: 17 March 2025
Abstract
Highly resolved simulations reveal the fundamental influence of a carrier fluid’s flow dynamics on triboelectric powder charging. We found that particles transported through a square-shaped duct charge faster than in a channel flow caused by secondary flows that led to more severe particle–wall collisions. Specifically, particles with a Stokes number of 4.69 achieve 85 % of their equilibrium charge approximately 1.5 times faster in duct flow than in channel flow. Also, charge distribution is more uniform in a duct cross-section compared with a channel cross-section. In channel flow, particles are trapped near the walls and collide frequently due to limited movement in the wall-normal direction, causing localized charge buildup. In contrast, duct flow promotes better mixing through secondary flows, reducing repeating collisions and providing uniform charge distribution across the cross-section. Upon charging, electrostatic forces significantly reshape particle behaviour and distribution. Once the powder achieves half of its equilibrium charge, particles increasingly accumulate at the wall, leading to a reduced concentration in the central region. These changes in particle distribution have a noticeable impact on the surrounding fluid phase and alter the overall flow dynamics. These findings open the possibility for a new measure to control powder charging by imposing a specific pattern.
- Type
- JFM Papers
- Information
- Copyright
- © The Author(s), 2025. Published by Cambridge University Press
References
