Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-16T17:30:31.425Z Has data issue: false hasContentIssue false

Scaling of velocity fluctuations in statistically unstable boundary-layer flows

Published online by Cambridge University Press:  08 January 2020

Xiang I. A. Yang
Affiliation:
Mechanical Engineering, Penn State University, State College, PA16802, USA
Sergio Pirozzoli
Affiliation:
Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, 00184Rome RM, Italy
Mahdi Abkar*
Affiliation:
Department of Engineering, Aarhus University, 8000Aarhus C, Denmark
*
Email address for correspondence: [email protected]

Abstract

Much of our theoretical understanding of statistically stable and unstable flows is from the classical Monin–Obukhov similarity theory: the theory predicts the scaling of the mean flow well, but its prediction of the turbulent fluctuation is far from satisfactory. This study builds on Monin–Obukhov similarity theory and Townsend’s attached-eddy hypothesis. We present a model that connects the mean flow and the streamwise velocity fluctuations in both neutral and unstable boundary-layer flows at both moderate and high Reynolds numbers. The model predictions are compared to direct numerical simulations of weakly unstable boundary layers at moderate Reynolds numbers, and large-eddy simulations of unstable boundary-layer flows at high Reynolds numbers. The flow is shear dominated. The range of stability parameter considered in this work is $L/\unicode[STIX]{x1D6FF}<-0.1$, where $L$ is the Monin–Obukhov length, and $\unicode[STIX]{x1D6FF}$ is the boundary-layer height. Reasonably good prediction of velocity fluctuations based on knowledge of the mean velocity profile is obtained.

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abkar, M., Bae, H. J. & Moin, P. 2016a Minimum-dissipation scalar transport model for large-eddy simulation of turbulent flows. Phys. Rev. Fluids 1 (4), 041701.CrossRefGoogle Scholar
Abkar, M. & Moin, P. 2017 Large-eddy simulation of thermally stratified atmospheric boundary-layer flow using a minimum dissipation model. Boundary-Layer Meteorol. 165 (3), 405419.CrossRefGoogle ScholarPubMed
Abkar, M. & Porté-Agel, F. 2015 Influence of atmospheric stability on wind-turbine wakes: a large-eddy simulation study. Phys. Fluids 27 (3), 035104.CrossRefGoogle Scholar
Abkar, M., Sharifi, A. & Porté-Agel, F. 2016b Wake flow in a wind farm during a diurnal cycle. J. Turbul. 17 (4), 420441.CrossRefGoogle Scholar
Abkar, M., Sørensen, J. & Porté-Agel, F. 2018 An analytical model for the effect of vertical wind veer on wind turbine wakes. Energies 11 (7), 1838.CrossRefGoogle Scholar
Alfredsson, P. H., Segalini, A. & Örlü, R. 2011 A new scaling for the streamwise turbulence intensity in wall-bounded turbulent flows and what it tells us about the outer peak. Phys. Fluids 23 (4), 041702.CrossRefGoogle Scholar
Baars, W. J., Hutchins, N. & Marusic, I. 2017 Self-similarity of wall-attached turbulence in boundary layers. J. Fluid Mech. 823, R2.CrossRefGoogle Scholar
Baars, W. & Marusic, I. 2020 Data-driven decomposition of the streamwise turbulence kinetic energy in boundary layers. Part 1. Energy spectra. J. Fluid Mech. 882, A25.Google Scholar
Banerjee, T., Katul, G., Salesky, S. & Chamecki, M. 2015 Revisiting the formulations for the longitudinal velocity variance in the unstable atmospheric surface layer. Q. J. R. Meteorol. Soc. 141 (690), 16991711.CrossRefGoogle Scholar
Blass, A., Zhu, X., Verzicco, R., Lohse, D. & Stevens, R. J.2019 Flow organization and heat transfer in turbulent wall sheared thermal convection. arXiv:1904.11400.Google Scholar
Bou-Zeid, E., Meneveau, C. & Parlange, M. 2005 A scale-dependent Lagrangian dynamic model for large eddy simulation of complex turbulent flows. Phys. Fluids 17 (2), 025105.CrossRefGoogle Scholar
Businger, J. A., Wyngaard, J. C., Izumi, Y. & Bradley, E. F. 1971 Flux-profile relationships in the atmospheric surface layer. J. Atmos. Sci. 28, 181189.2.0.CO;2>CrossRefGoogle Scholar
Clever, R. & Busse, F. 1991 Instabilities of longitudinal rolls in the presence of Poiseuille flow. J. Fluid Mech. 229, 517529.CrossRefGoogle Scholar
Coles, D. 1956 The law of the wake in the turbulent boundary layer. J. Fluid Mech. 1 (2), 191226.CrossRefGoogle Scholar
Domaradzki, J. A. & Metcalfe, R. W. 1988 Direct numerical simulations of the effects of shear on turbulent Rayleigh–Bénard convection. J. Fluid Mech. 193, 499531.CrossRefGoogle Scholar
Foken, T. 2006 50 years of the Monin–Obukhov similarity theory. Boundary-Layer Meteorol. 119 (3), 431447.CrossRefGoogle Scholar
Garai, A., Kleissl, J. & Sarkar, S. 2014 Flow and heat transfer in convectively unstable turbulent channel flow with solid-wall heat conduction. J. Fluid Mech. 757, 5781.CrossRefGoogle Scholar
Graham, J., Kanov, K., Yang, X. I. A., Lee, M., Malaya, N., Lalescu, C. C., Burns, R., Eyink, G., Szalay, A., Moser, R. D. & Meneveau, C. 2016 A web services accessible database of turbulent channel flow and its use for testing a new integral wall model for les. J. Turbul. 17 (2), 181215.CrossRefGoogle Scholar
Huang, J. & Bou-Zeid, E. 2013 Turbulence and vertical fluxes in the stable atmospheric boundary layer. Part I. A large-eddy simulation study. J. Atmos. Sci. 70 (6), 15131527.CrossRefGoogle Scholar
Hultmark, M., Vallikivi, M., Bailey, S. & Smits, A. 2012 Turbulent pipe flow at extreme Reynolds numbers. Phys. Rev. Lett. 108 (9), 094501.CrossRefGoogle ScholarPubMed
Hutchins, N., Nickels, T. B., Marusic, I. & Chong, M. 2009 Hot-wire spatial resolution issues in wall-bounded turbulence. J. Fluid Mech. 635, 103136.CrossRefGoogle Scholar
Kader, B. A. & Yaglom, A. M. 1990 Mean fields and fluctuation moments in unstably stratified turbulent boundary layers. J. Fluid Mech. 212, 637662.CrossRefGoogle Scholar
von Kármán, T. 1930 Mechanische ahnlichkeit und turbulenz. Math.-Phys. Klasse.Google Scholar
Katul, G. G., Konings, A. G. & Porporato, A. 2011 Mean velocity profile in a sheared and thermally stratified atmospheric boundary layer. Phys. Rev. Lett. 107 (26), 268502.CrossRefGoogle Scholar
Katul, G. G., Li, D., Chamecki, M. & Bou-Zeid, E. 2013 Mean scalar concentration profile in a sheared and thermally stratified atmospheric surface layer. Phys. Rev. E 87 (2), 023004.Google Scholar
Katul, G. G., Porporato, A., Shah, S. & Bou-Zeid, E. 2014 Two phenomenological constants explain similarity laws in stably stratified turbulence. Phys. Rev. E 89 (2), 023007.Google ScholarPubMed
Kawai, S. & Larsson, J. 2012 Wall-modeling in large eddy simulation: length scales, grid resolution, and accuracy. Phys. Fluids 24 (1), 015105.CrossRefGoogle Scholar
Kazakov, K. A. 2016 The mean velocity profile of near-wall turbulent flow: is there anything in between the logarithmic and power laws? J. Turbul. 17 (11), 10151047.CrossRefGoogle Scholar
Kim, J. & Moin, P. 1989 Transport of passive scalars in a turbulent channel flow. In Turbulent Shear Flows, vol. 6, pp. 8596. Springer.CrossRefGoogle Scholar
Krug, D., Philip, J. & Marusic, I. 2017 Revisiting the law of the wake in wall turbulence. J. Fluid Mech. 811, 421435.CrossRefGoogle Scholar
Lee, M. & Moser, R. D. 2015 Direct numerical simulation of turbulent channel flow up to Re 𝜏 ≈ 5200. J. Fluid Mech. 774, 395415.CrossRefGoogle Scholar
Lumley, J. L. & Panofsky, H. A. 1964 The structure of atmospheric turbulence. In Interscience Monographs and Texts in Physics and Astronomy. Wiley.Google Scholar
Marusic, I. & Monty, J. P. 2019 Attached eddy model of wall turbulence. Annu. Rev. Fluid Mech. 51, 4974.CrossRefGoogle Scholar
Marusic, I., Monty, J. P., Hultmark, M. & Smits, A. J. 2013 On the logarithmic region in wall turbulence. J. Fluid Mech. 716, R3.CrossRefGoogle Scholar
Moeng, C. 1984 A large-eddy simulation model for the study of planetary boundary-layer turbulence. J. Atmos. Sci. 46, 23112330.2.0.CO;2>CrossRefGoogle Scholar
Monin, A. S. & Obukhov, A. M. 1954 Basic laws of turbulent mixing in the surface layer of the atmosphere. Contrib. Geophys. Inst. Acad. Sci. USSR 151 (163), e187.Google Scholar
Nagib, H. & Chauhan, K. 2008 Variations of von Kármán coefficient in canonical flows. Phys. Fluids 20, 101518.CrossRefGoogle Scholar
Örlü, R., Fiorini, T., Segalini, A., Bellani, G., Talamelli, A. & Alfredsson, P. H. 2017 Reynolds stress scaling in pipe flow turbulencefirst results from ciclope. Phil. Trans. R. Soc. Lond. A 375 (2089), 20160187.Google ScholarPubMed
Pabiou, H., Mergui, S. & Benard, C. 2005 Wavy secondary instability of longitudinal rolls in Rayleigh–Bénard–Poiseuille flows. J. Fluid Mech. 542, 175194.CrossRefGoogle Scholar
Panofsky, H. A., Tennekes, H., Lenschow, D. H. & Wyngaard, J. 1977 The characteristics of turbulent velocity components in the surface layer under convective conditions. Boundary-Layer Meteorol. 11 (3), 355361.CrossRefGoogle Scholar
Pirozzoli, S., Bernardini, M. & Orlandi, P. 2016 Passive scalars in turbulent channel flow at high Reynolds number. J. Fluid Mech. 788, 614639.CrossRefGoogle Scholar
Pirozzoli, S., Bernardini, M., Verzicco, R. & Orlandi, P. 2017 Mixed convection in turbulent channels with unstable stratification. J. Fluid Mech. 821, 482516.CrossRefGoogle Scholar
Prandtl, L. 1925 Bericht uber untersuchungen zur ausgebildeten turbulenz. Z. Angew. Math. Mech. 5, 136139.CrossRefGoogle Scholar
Rozema, W., Bae, H. J., Moin, P. & Verstappen, R. 2015 Minimum-dissipation models for large-eddy simulation. Phys. Fluids 27 (8), 085107.CrossRefGoogle Scholar
Salesky, S. T., Chamecki, M. & Bou-Zeid, E. 2017 On the nature of the transition between roll and cellular organization in the convective boundary layer. Boundary-Layer Meteorol. 163 (1), 4168.CrossRefGoogle Scholar
Scagliarini, A., Einarsson, H., Gylfason, Á. & Toschi, F. 2015 Law of the wall in an unstably stratified turbulent channel flow. J. Fluid Mech. 781, R5.CrossRefGoogle Scholar
Smits, A. J., McKeon, B. J. & Marusic, I. 2011 High Reynolds number wall turbulence. Annu. Rev. Fluid Mech. 43, 353375.CrossRefGoogle Scholar
Stevens, R. J., Wilczek, M. & Meneveau, C. 2014 Large-eddy simulation study of the logarithmic law for second-and higher-order moments in turbulent wall-bounded flow. J. Fluid Mech. 757, 888907.CrossRefGoogle Scholar
Stoll, R. & Porté-Agel, F. 2006 Dynamic subgridscale models for momentum and scalar fluxes in largeeddy simulations of neutrally stratified atmospheric boundary layers over heterogeneous terrain. Water Resour. Res. 42 (1), W01409.CrossRefGoogle Scholar
Stoll, R. & Porté-Agel, F. 2009 Surface heterogeneity effects on regional-scale fluxes in stable boundary layers: surface temperature transitions. J. Atmos. Sci. 66 (2), 412431.CrossRefGoogle Scholar
Stull, R. 2012 An Introduction to Boundary Layer Meteorology, vol. 13. Springer Science & Business Media.Google Scholar
Sullivan, P. P., McWilliams, J. C. & Moeng, C.-H. 1994 A subgrid-scale model for large-eddy simulation of planetary boundary-layer flows. Boundary-Layer Meteorol. 71 (3), 247276.CrossRefGoogle Scholar
Talluru, K. M., Baidya, R., Hutchins, N. & Marusic, I. 2014 Amplitude modulation of all three velocity components in turbulent boundary layers. J. Fluid Mech. 746, R1.CrossRefGoogle Scholar
Townsend, A. 1976 The Structure of Turbulent Shear Flow. Cambridge University Press.Google Scholar
Wilczek, M., Stevens, R. J. & Meneveau, C. 2015 Spatio-temporal spectra in the logarithmic layer of wall turbulence: large-eddy simulations and simple models. J. Fluid Mech. 769, R1.CrossRefGoogle Scholar
Wilson, J. 2008 Monin-Obukhov functions for standard deviations of velocity. Boundary-Layer Meteorol. 129 (3), 353369.CrossRefGoogle Scholar
Wu, X., Moin, P., Wallace, J. M., Skarda, J., Lozano-Durán, A. & Hickey, J.-P. 2017 Transitional–turbulent spots and turbulent–turbulent spots in boundary layers. Proc. Natl Acad. Sci. USA 114 (27), E5292E5299.CrossRefGoogle ScholarPubMed
Xu, H. H. & Yang, X. I. A. 2018 Fractality and the law of the wall. Phys. Rev. E 97 (5), 053110.Google Scholar
Yang, X. & Abkar, M. 2018 A hierarchical random additive model for passive scalars in wall-bounded flows at high Reynolds numbers. J. Fluid Mech. 842, 354380.CrossRefGoogle ScholarPubMed
Yang, X. I. A. & Meneveau, C. 2018 Hierarchical random additive model for wall-bounded flows at high Reynolds numbers. Fluid Dyn. Res. 51 (1), 011405.Google Scholar
Yang, X. I. A., Meneveau, C., Marusic, I. & Biferale, L. 2016 Extended self-similarity in moment-generating-functions in wall-bounded turbulence at high Reynolds number. Phys. Rev. Fluids 1 (4), 044405.CrossRefGoogle Scholar
Yang, X. I. A., Park, G. I. & Moin, P. 2017 Log-layer mismatch and modeling of the fluctuating wall stress in wall-modeled large-eddy simulations. Phys. Rev. Fluids 2 (10), 104601.CrossRefGoogle ScholarPubMed