Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-12-01T12:44:06.087Z Has data issue: false hasContentIssue false

Scaling of the puffing Strouhal number for buoyant jets and plumes

Published online by Cambridge University Press:  21 May 2020

N. T. Wimer
Affiliation:
Department of Mechanical Engineering, University of Colorado, Boulder, CO80309, USA
C. Lapointe
Affiliation:
Department of Mechanical Engineering, University of Colorado, Boulder, CO80309, USA
J. D. Christopher
Affiliation:
Department of Mechanical Engineering, University of Colorado, Boulder, CO80309, USA
S. P. Nigam
Affiliation:
Department of Mechanical Engineering, University of Colorado, Boulder, CO80309, USA
T. R. S. Hayden
Affiliation:
Department of Mechanical Engineering, University of Colorado, Boulder, CO80309, USA
A. Upadhye
Affiliation:
Corporate Research Process Laboratory, 3M Company, St Paul, MN55144, USA
M. Strobel
Affiliation:
Corporate Research Process Laboratory, 3M Company, St Paul, MN55144, USA
G. B. Rieker
Affiliation:
Department of Mechanical Engineering, University of Colorado, Boulder, CO80309, USA
P. E. Hamlington*
Affiliation:
Department of Mechanical Engineering, University of Colorado, Boulder, CO80309, USA
*
Email address for correspondence: [email protected]

Abstract

Prior research has shown that buoyant jets and plumes ‘puff’ at a frequency that depends on the balance of momentum and buoyancy fluxes at the inlet, as parametrized by the Richardson number. Experiments have revealed the existence of scaling relations between the Strouhal number of the puffing and the inlet Richardson number, but geometry-specific relations are required when the characteristic length is taken to be the diameter (for round inlets) or width (for planar inlets). Similar to earlier studies of rectangular buoyant jets and plumes, in the present study we use the hydraulic radius of the inlet as the characteristic length to obtain a single Strouhal–Richardson scaling relation for a variety of inlet geometries over Richardson numbers that span three orders of magnitude. In particular, we use adaptive mesh numerical simulations to compute puffing Strouhal numbers for circular, rectangular (with three different aspect ratios), triangular and annular high-temperature buoyant jets and plumes over a range of Richardson numbers. We then combine these results with prior experimental data for round, planar and rectangular buoyant jets and plumes to propose a new scaling relation that describes puffing Strouhal numbers for various inlet shapes and for hydraulic Richardson numbers spanning over four orders of magnitude. This empirically motivated scaling relation is also shown to be in good agreement with prior results from global linear stability analyses.

Type
JFM Papers
Copyright
© 3M Company and The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Almgren, A. S., Bell, J. B., Colella, P., Howell, L. H. & Welcome, M. L. 1998 A conservative adaptive projection method for the variable density incompressible Navier–Stokes equations. J. Comput. Phys. 142 (1), 146.CrossRefGoogle Scholar
Bell, J. B., Day, M. S., Shepherd, I. G., Johnson, M. R., Cheng, R. K., Grcar, J. F., Beckner, V. E. & Lijewski, M. J. 2005 Numerical simulation of a laboratory-scale turbulent V-flame. Proc. Natl Acad. Sci. USA 102 (29), 1000610011.CrossRefGoogle ScholarPubMed
Benzi, R., Biferale, L., Fisher, R. T., Kadanoff, L. P., Lamb, D. Q. & Toschi, F. 2008 Intermittency and universality in fully developed inviscid and weakly compressible turbulent flows. Phys. Rev. Lett. 100, 234503.CrossRefGoogle ScholarPubMed
Bharadwaj, K. K. & Das, D. 2017 Global instability analysis and experiments on buoyant plumes. J. Fluid Mech. 832, 97145.CrossRefGoogle Scholar
Bharadwaj, K. K. & Das, D. 2019 Puffing in planar buoyant plumes: BiGlobal instability analysis and experiments. J. Fluid Mech. 863, 817849.CrossRefGoogle Scholar
Campion, R., Delgado-Granados, H., Legrand, D., Taquet, N., Boulesteix, T., Pedraza-Espitía, S. & Lecocq, T. 2018 Breathing and coughing: the extraordinarily high degassing of Popocatépetl volcano investigated with an SO2 camera. Front. Earth Sci. 6, 163.CrossRefGoogle Scholar
Cetegen, B. M. 1997 Behavior of naturally unstable and periodically forced axisymmetric buoyant plumes of helium and helium–air mixtures. Phys. Fluids 9 (12), 37423752.CrossRefGoogle Scholar
Cetegen, B. M., Dong, Y. & Soteriou, M. C. 1998 Experiments on stability and oscillatory behavior of planar buoyant plumes. Phys. Fluids 10 (7), 16581665.CrossRefGoogle Scholar
Cetegen, B. M. & Kasper, K. D. 1996 Experiments on the oscillatory behavior of buoyant plumes of helium and helium–air mixtures. Phys. Fluids 8 (11), 29742984.CrossRefGoogle Scholar
Chakravarthy, R. V. K., Lesshafft, L. & Huerre, P. 2018 Global stability of buoyant jets and plumes. J. Fluid Mech. 835, 654673.CrossRefGoogle Scholar
Christopher, J. D., Wimer, N. T., Lapointe, C., Hayden, T. R. S., Grooms, I., Rieker, G. B. & Hamlington, P. E. 2018 Parameter estimation for complex thermal-fluid flows using approximate Bayesian computation. Phys. Rev. F 3 (104602), 116.Google Scholar
Day, M. S. & Bell, J. B. 2000 Numerical simulation of laminar reacting flows with complex chemistry. Combust. Theor. Model. 4 (4), 535556.CrossRefGoogle Scholar
Gaskin, S. J. & Wood, I. R. 2001 Flow structure and mixing dynamics of the advected line thermal. J. Hydraul. Res. 39 (5), 459468.Google Scholar
Hamins, A., Yang, J. C. & Kashiwagi, T. 1992 An experimental investigation of the pulsation frequency of flames. Symp. (Intl) Combust. 24 (1), 16951702.CrossRefGoogle Scholar
Hamlington, P. E., Poludnenko, A. Y. & Oran, E. S. 2011 Interactions between turbulence and flames in premixed reacting flows. Phys. Fluids 23, 125111.CrossRefGoogle Scholar
Hayden, T. R. S., Petrykowski, D. J., Sanchez, A., Nigam, S. P., Lapointe, C., Christopher, J. D., Wimer, N. T., Upadhye, A., Strobel, M., Hamlington, P. E. et al. 2019 Characterization of OH, H2O, and temperature profiles in industrial flame treatment systems interacting with polymer films. Proc. Combust. Inst. 37 (1), 15711578.CrossRefGoogle Scholar
Nichols, J. W., Schmid, P. J. & Riley, J. J. 2007 Self-sustained oscillations in variable-density round jets. J. Fluid Mech. 582, 341376.CrossRefGoogle Scholar
Nonaka, A., Bell, J. B., Day, M. S., Gilet, C., Almgren, A. S. & Minion, M. L. 2012 A deferred correction coupling strategy for low Mach number flow with complex chemistry. Combust. Theor. Model. 16 (6), 10531088.CrossRefGoogle Scholar
Nonaka, A., Day, M. S. & Bell, J. B. 2018 A conservative, thermodynamically consistent numerical approach for low Mach number combustion. Part I. Single-level integration. Combust. Theor. Model. 22 (1), 156184.CrossRefGoogle Scholar
Soteriou, M. C., Dong, Y. & Cetegen, B. M. 2002 Lagrangian simulation of the unsteady near field dynamics of planar buoyant plumes. Phys. Fluids 14 (9), 31183140.CrossRefGoogle Scholar
Wimer, N. T., Day, M. S., Lapointe, C., Makowiecki, A. S., Glusman, J. F., Daily, J. W., Rieker, G. B. & Hamlington, P. E.2019 Numerical simulations of buoyancy-driven flows using adaptive mesh refinement: structure and dynamics of a large-scale helium plume. Manuscript submitted for publication. Theor. Comput. Fluid Dyn. (submitted) arXiv:1901.10554.Google Scholar