Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-17T03:21:07.776Z Has data issue: false hasContentIssue false

Scaling of rough-wall turbulence by the roughness height and steepness

Published online by Cambridge University Press:  11 August 2020

Guo-Zhen Ma
Affiliation:
AML, Department of Engineering Mechanics, Tsinghua University, Beijing100084, PR China
Chun-Xiao Xu
Affiliation:
AML, Department of Engineering Mechanics, Tsinghua University, Beijing100084, PR China
Hyung Jin Sung
Affiliation:
Department of Mechanical Engineering, KAIST, Daejeon34141, Korea
Wei-Xi Huang*
Affiliation:
AML, Department of Engineering Mechanics, Tsinghua University, Beijing100084, PR China
*
Email address for correspondence: [email protected]

Abstract

A roughness scaling behaviour is tested by performing the direct numerical simulation (DNS) of a turbulent channel flow over three-dimensional sinusoidal rough walls. By systematically varying the roughness height ${{k}^{+}}$ and the roughness steepness S, the results for three groups of cases are considered and compared with those for flat-wall turbulence. The results show that the mean velocity and Reynolds stresses are highly dependent on both ${{k}^{+}}$ and S. To describe these specific relationships, we define a coupling scale ${{k}^{+}} S$. With this coupling scale, all the simulated data for the roughness function (${\rm \Delta} {{U}^{+}}$), the ratio of the pressure drag to the total wall resistance (${{\gamma }_{p}}$), the normalized bulk mean velocity ($U_{b}^{+}$) and the peak of the streamwise turbulent velocity fluctuations ($\overline {u_{p}^{\prime +}}$) collapse onto single curves, which shows that there is a strong direct correlation between them, i.e. ${\rm \Delta} U^{+}, \gamma _{p}, U_{b}^{+}, \overline {u_{p}^{\prime +}} \propto f(k^{+} S)$. Furthermore, a model for the prediction of wall resistance based on the roughness function can be established by defining a drag increasing ratio (DI). Accordingly, the wall resistance coefficient ${{C}_{f}}$ can be estimated directly from ${{k}^{+}}S$ of a given rough surface. These results suggest that this coupling scale provides a useful alternative to the equivalent sand grain roughness ${{k}_{s}}$.

Type
JFM Rapids
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Busse, A., Thakkar, M. & Sandham, N. D. 2017 Reynolds-number dependence of the near-wall flow over irregular rough surfaces. J. Fluid Mech. 810, 196224.CrossRefGoogle Scholar
Chan, L., MacDonald, M., Chung, D., Hutchins, N. & Ooi, A. 2015 A systematic investigation of roughness height and wavelength in turbulent pipe flow in the transitionally rough regime. J. Fluid Mech. 771, 743777.CrossRefGoogle Scholar
Chan, L., MacDonald, M., Chung, D., Hutchins, N. & Ooi, A. 2018 Secondary motion in turbulent pipe flow with three-dimensional roughness. J. Fluid Mech. 854, 533.CrossRefGoogle Scholar
Flack, K. A. & Schultz, M. P. 2010 Review of hydraulic roughness scales in the fully rough regime. Trans. ASME: J. Fluids Engng 132 (4), 041203.Google Scholar
Flack, K. A., Schultz, M. P. & Rose, W. B. 2012 The onset of roughness effects in the transitionally rough regime. Intl J. Heat Fluid Flow 35, 160167.CrossRefGoogle Scholar
Forooghi, P., Stroh, A., Magagnato, F., Jakirlić, S. & Frohnapfel, B. 2017 Toward a universal roughness correlation. Trans. ASME: J. Fluids Engng 139 (12), 121201.Google Scholar
Ganju, S., Davis, J., Bailey, S. C. & Brehm, C. 2019 Direct numerical simulations of turbulent channel flows with sinusoidal walls. In AIAA Scitech 2019 Forum, AIAA Paper 20192141.Google Scholar
Garcia-Mayoral, R., Gómez-de Segura, G. & Fairhall, C. T. 2019 The control of near-wall turbulence through surface texturing. Fluid Dyn. Res. 51 (1), 011410.CrossRefGoogle Scholar
Ge, M. W., Xu, C. X. & Cui, G. X. 2010 Direct numerical simulation of flow in channel with time-dependent wall geometry. Appl. Math. Mech. 31 (1), 97108.CrossRefGoogle Scholar
Hama, F. R. 1954 Boundary-layer characteristics for smooth and rough surfaces. Trans. Soc. Nav. Archit. Mar. Engrs 62, 333358.Google Scholar
Jimenez, J. 2004 Turbulent flows over rough walls. Annu. Rev. Fluid Mech. 36 (1), 173196.CrossRefGoogle Scholar
Lee, J. H., Sung, H. J. & Krogstad, P. Å. 2011 Direct numerical simulation of the turbulent boundary layer over a cube-roughened wall. J. Fluid Mech. 669, 397431.CrossRefGoogle Scholar
Leonardi, S., Orlandi, P. & Antonia, R. A. 2007 Properties of d-and k-type roughness in a turbulent channel flow. Phys. Fluids 19 (12), 125101.CrossRefGoogle Scholar
Ma, R., Alamé, K. & Mahesh, K. 2019 Direct numerical simulation of turbulent channel flow over random rough surfaces. arXiv:1907.10716.Google Scholar
MacDonald, M., Chan, L., Chung, D., Hutchins, N. & Ooi, A. 2016 Turbulent flow over transitionally rough surfaces with varying roughness densities. J. Fluid Mech. 804, 130161.CrossRefGoogle Scholar
Marusic, I., Monty, J. P., Hultmark, M. & Smits, A. J. 2013 On the logarithmic region in wall turbulence. J. Fluid Mech. 716, R3.CrossRefGoogle Scholar
Mejia-Alvarez, R. & Christensen, K. T. 2013 Wall-parallel stereo particle-image velocimetry measurements in the roughness sublayer of turbulent flow overlying highly irregular roughness. Phys. Fluids 25 (11), 115109.CrossRefGoogle Scholar
Moser, R. D., Kim, J. & Mansour, N. N. 1999 Direct numerical simulation of turbulent channel flow up to re $\tau =590$. Phys. Fluids 11 (4), 943945.CrossRefGoogle Scholar
Napoli, E., Armenio, V. & De Marchis, M. 2008 The effect of the slope of irregularly distributed roughness elements on turbulent wall-bounded flows. J. Fluid Mech. 613, 385394.CrossRefGoogle Scholar
Nikuradse, J. 1933 Laws of flow in rough pipes. NACA Relatório Técnico 1292.Google Scholar
Orlandi, P. 2013 The importance of wall-normal Reynolds stress in turbulent rough channel flows. Phys. Fluids 25 (11), 110813.CrossRefGoogle Scholar
Schlichting, H. 1936 Experimentelle untersuchungen zum rauhigkeitsproblem. Ing.-Arch. 7 (1), 134.CrossRefGoogle Scholar
Schultz, M. P. & Flack, K. A. 2009 Turbulent boundary layers on a systematically varied rough wall. Phys. Fluids 21 (1), 015104.CrossRefGoogle Scholar
Sigal, A. & Danberg, J. E. 1990 New correlation of roughness density effect on the turbulent boundary layer. AIAA J. 28 (3), 554556.CrossRefGoogle Scholar
Smits, A. J., McKeon, B. J. & Marusic, I. 2011 High–Reynolds number wall turbulence. Annu. Rev. Fluid Mech. 43 (1), 353375.CrossRefGoogle Scholar
Squire, D. T., Morrill-Winter, C., Hutchins, N., Schultz, M. P., Klewicki, J. C. & Marusic, I. 2016 Comparison of turbulent boundary layers over smooth and rough surfaces up to high Reynolds numbers. J. Fluid Mech. 795, 210240.CrossRefGoogle Scholar
Stroh, A., Schäfer, K., Frohnapfel, B. & Forooghi, P. 2020 Rearrangement of secondary flow over spanwise heterogeneous roughness. J. Fluid Mech. 885, R5.CrossRefGoogle Scholar
Thakkar, M., Busse, A. & Sandham, N. 2017 Surface correlations of hydrodynamic drag for transitionally rough engineering surfaces. J. Turbul. 18 (2), 138169.CrossRefGoogle Scholar
Van Rij, J. A., Belnap, B. J. & Ligrani, P. M. 2002 Analysis and experiments on three-dimensional, irregular surface roughness. Trans. ASME: J. Fluids Engng 124 (3), 671677.Google Scholar
Yang, X. I., Sadique, J., Mittal, R. & Meneveau, C. 2016 Exponential roughness layer and analytical model for turbulent boundary layer flow over rectangular-prism roughness elements. J. Fluid Mech. 789, 127165.CrossRefGoogle Scholar
Yuan, J. & Piomelli, U. 2014 Estimation and prediction of the roughness function on realistic surfaces. J. Turbul. 15 (6), 350365.CrossRefGoogle Scholar
Zhang, W. Y., Huang, W. X. & Xu, C. X. 2019 Very large-scale motions in turbulent flows over streamwise traveling wavy boundaries. Phys. Rev. Fluids 4 (5), 054601.CrossRefGoogle Scholar