Hostname: page-component-55f67697df-px5tt Total loading time: 0 Render date: 2025-05-11T09:13:11.190Z Has data issue: false hasContentIssue false

Scaling of pressure fluctuation in turbulent internal flows

Published online by Cambridge University Press:  09 May 2025

Tie Wei*
Affiliation:
Department of Mechanical Engineering, New Mexico Tech, 801 Leroy PL, Socorro, NM 87801, USA
Sergio Pirozzoli
Affiliation:
Dipartimento di Ingegneria Meccanica e Aerospaziale, Universitá di Roma ‘La Sapienza’, Via Eudossiana 18, Roma 00184, Italy
*
Corresponding author: Tie Wei, [email protected]

Abstract

Previous studies on the scaling of pressure fluctuations in wall-bounded turbulent flows have typically employed the same frameworks as those used for mean flow, with inner scaling based on frictional velocity and viscous length scales, and outer scaling relying on boundary layer thickness or displacement thickness. These traditional scales primarily reflect the characteristics of the mean streamwise velocity profile and momentum balance. In this work, we propose novel scaling frameworks for pressure fluctuations in turbulent channel and pipe flows, derived from the Poisson equation for pressure fluctuations. Applying the scaling patch approach, we analyse the rapid and slow terms in the Poisson equation, and introduce new scaling for pressure fluctuation variance in both the inner and outer regions. These new scales are designed to better capture the influence of Reynolds stresses by incorporating their peak values. Additionally, we establish a strong correlation between the root mean square (r.m.s.) of pressure fluctuations and the Reynolds shear stress, resulting in an empirical equation that accurately predicts their ratio. This equation provides a practical method for estimating the r.m.s. of pressure fluctuations in the flow, which remains challenging to measure in experimental investigations.

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Afzal, N. 1982 Fully developed turbulent flow in a pipe: an intermediate layer. Arch. Appl. Mech. 52 (6), 355377.Google Scholar
Bradshaw, P. 1967 ‘Inactive’ motion and pressure fluctuations in turbulent boundary layers. J. Fluid Mech. 30 (2), 241258.CrossRefGoogle Scholar
Bull, M.K. 1996 Wall-pressure fluctuations beneath turbulent boundary layers: some reflections on forty years of research. J. Sound Vib. 190 (3), 299315.CrossRefGoogle Scholar
Fife, P. 2006 Scaling approaches to steady wall-induced turbulence. arXiv: 2301.08740[physics.flu-dyn:], 141.Google Scholar
Fife, P., Klewicki, J., McMurtry, P. & Wei, T. 2005 a Multiscaling in the presence of indeterminacy: wall-induced turbulence. Multiscale Model. Simul. 4 (3), 936959.CrossRefGoogle Scholar
Fife, P., Klewicki, J. & Wei, T. 2009 Time averaging in turbulence settings may reveal an infinite hierarchy of length scales. Discr. Contin. Dyn. Syst. A 24 (3), 781.CrossRefGoogle Scholar
Fife, P., Wei, T., Klewicki, J. & McMurtry, P. 2005 b Stress gradient balance layers and scale hierarchies in wall-bounded turbulent flows. J. Fluid Mech. 532, 165189.CrossRefGoogle Scholar
Gerolymos, G.A., Sénéchal, D. & Vallet, I. 2013 Wall effects on pressure fluctuations in turbulent channel flow. J. Fluid Mech. 720, 1565.CrossRefGoogle Scholar
Hoyas, S. & Jiménez, J. 2006 Scaling of the velocity fluctuations in turbulent channels up to Reτ = 2003. Phys. Fluids 18 (011702), 14.CrossRefGoogle Scholar
Hwang, Y.F., Bonness, W.K. & Hambric, S.A. 2009 Comparison of semi-empirical models for turbulent boundary layer wall pressure spectra. J. Sound Vib. 319 (1–2), 199217.CrossRefGoogle Scholar
Jiménez, J. & Hoyas, S. 2008 Turbulent fluctuations above the buffer layer of wall-bounded flows. J. Fluid Mech. 611, 215236.CrossRefGoogle Scholar
von Kármán, T. 1934 Turbulence and skin friction. J. Aeronaut. Sci. 1 (1), 120.CrossRefGoogle Scholar
Keith, W.L., Hurdis, D.A. & Abraham, B.M. 1992 A comparison of turbulent boundary layer wall-pressure spectra. J. Fluids Engng 114 (3), 338347.CrossRefGoogle Scholar
Kim, J. 1989 On the structure of pressure fluctuations in simulated turbulent channel flow. J. Fluid Mech. 205, 421451.CrossRefGoogle Scholar
Kraichnan, R.H. 1956 Pressure fluctuations in turbulent flow over a flat plate. J. Acoust. Soc. Am. 28 (3), 378390.CrossRefGoogle Scholar
Lee, M.K. & Moser, R.D. 2015 Direct numerical simulation of turbulent channel flow up to Reτ = 5200. J. Fluid Mech. 774, 395415.CrossRefGoogle Scholar
Long, R.R. & Chen, T.-C. 1981 Experimental evidence for the existence of the ‘mesolayer’ in turbulent systems. J. Fluid Mech. 105, 1959.CrossRefGoogle Scholar
McKeon, B.J. & Smits, A.J. 2002 Static pressure correction in high Reynolds number fully developed turbulent pipe flow. Meas. Sci. Technol. 13 (10), 16081614.CrossRefGoogle Scholar
Mehrez, A., Philip, J., Yamamoto, Y. & Tsuji, Y. 2019 Pressure and spanwise velocity fluctuations in turbulent channel flows: logarithmic behavior of moments and coherent structures. Phys. Rev. Fluids 4 (4), 044601.CrossRefGoogle Scholar
Monin, A.S. & Yaglom, A.M. 1965 Statistical Fluid Mechanics, Volume I: Mechanics of Turbulence. MIT Press.Google Scholar
Panton, R.L., Lee, M.K. & Moser, R.D. 2017 Correlation of pressure fluctuations in turbulent wall layers. Phys. Rev. Fluids 2 (9), 094604.CrossRefGoogle Scholar
Pirozzoli, S. 2024 On the streamwise velocity variance in the near-wall region of turbulent flows. J. Fluid Mech. 989, A5.CrossRefGoogle Scholar
Pirozzoli, S., Romero, J., Fatica, M., Verzicco, R. & Orlandi, P. 2021 One-point statistics for turbulent pipe flow up to Reτ = 6000. J. Fluid Mech. 926, A28.CrossRefGoogle Scholar
Pirozzoli, S., Romero, J., Fatica, M., Verzicco, R. & Orlandi, P. 2022 DNS of passive scalars in turbulent pipe flow. J. Fluid Mech. 940, A45.CrossRefGoogle Scholar
Pirozzoli, S. & Wei, T. 2024 On pressure fluctuations in the near-wall region of turbulent flows. J. Fluid Mech. 989.CrossRefGoogle Scholar
Pope, S.B. 2000 Turbulent Flows. Cambridge University Press.Google Scholar
Schlichting, H. 1979 Boundary-Layer Theory. McGraw-Hill.Google Scholar
Simpson, R.L., Ghodbane, M. & McGrath, B.E. 1987 Surface pressure fluctuations in a separating turbulent boundary layer. J. Fluid Mech. 177, 167186.CrossRefGoogle Scholar
Sreenivasan, K.R. & Sahay, A. 1997 The persistence of viscous effects in the overlap region, and the mean velocity in turbulent pipe and channel flows. arXiv preprint physics/9708016, 115.Google Scholar
Tennekes, H. & Lumley, J.L. 1972 A First Course in Turbulence. MIT Press.CrossRefGoogle Scholar
Townsend, A.A. 1956 The Structure of Turbulent Shear Flow. Cambridge University Press.Google Scholar
Tsuji, Y., Marusic, I. & Johansson, A.V. 2016 Amplitude modulation of pressure in turbulent boundary layer. Intl J. Heat Fluid Flow 61, 211.CrossRefGoogle Scholar
Wei, T. 2020 Analyses of buoyancy-driven convection. Adv. Heat Transfer 52, 193.CrossRefGoogle Scholar
Wei, T., Fife, P., Klewicki, J. & McMurtry, P. 2005 Properties of the mean momentum balance in turbulent boundary layer, pipe and channel flows. J. Fluid Mech. 522, 303327.CrossRefGoogle Scholar
Wei, T. & Knopp, T. 2023 Outer scaling of the mean momentum equation for turbulent boundary layers under adverse pressure gradient. J. Fluid Mech. 958, 121.CrossRefGoogle Scholar
Wilmarth, W.W. 1975 Pressure fluctuations beneath turbulent boundary layers. Annu. Rev. Fluid Mech. 7 (1), 1336.CrossRefGoogle Scholar
Yu, M., Ceci, A. & Pirozzoli, S. 2022 Reynolds number effects and outer similarity of pressure fluctuations in turbulent pipe flow. Intl J. Heat Fluid Flow 96, 108998.CrossRefGoogle Scholar
Zagarola, M.V. & Smits, A.J. 1998 Mean-flow scaling of turbulent pipe flow. J. Fluid Mech. 373, 3379.CrossRefGoogle Scholar