Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-09T21:48:13.498Z Has data issue: false hasContentIssue false

Scaling of global properties of turbulence and skin friction in pipe and channel flows

Published online by Cambridge University Press:  19 May 2010

VICTOR YAKHOT
Affiliation:
Department of Aerospace and Mechanical Engineering, Boston University, Boston, MA 02215, USA
SEAN C. C. BAILEY
Affiliation:
Department of Mechanical Engineering, University of Kentucky, Lexington, KY 40506, USA
ALEXANDER J. SMITS*
Affiliation:
Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA
*
Email address for correspondence: [email protected]

Abstract

Experimental data on the Reynolds number dependence of the area-averaged turbulent kinetic energy K and dissipation rate ℰ are presented. It is shown that while in the interval ReD > 105 the total kinetic energy scales with friction velocity (K/u*2 = const), a new scaling law K/〈U2K/(u*2ReDθ) = const (θ ≈ 1/4) has been discovered in the interval ReD < 105. It is argued that this transition is responsible for the well-known change in the scaling behaviour of the friction factor observed in pipe and channels flows at ReD ≈ 105.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bailey, S. C. C., Hultmark, M., Schumacher, J., Yakhot, V. & Smits, A. J. 2009 Measurement of local dissipation scales in turbulent pipe flow. Phys. Rev. Lett. 103, 014502.CrossRefGoogle ScholarPubMed
Boeck, T., Krasnov, D. & Schumacher, J. 2010 Statistics of velocity gradients in wall-bounded shear flow turbulence. Physica D (in press) (doi:10.1016/j.physd.2009.10.004).CrossRefGoogle Scholar
Durst, F., Jovanovic, J. & Sender, J. 1995 LDA measurements in the near-wall region of a turbulent pipe flow. J. Fluid Mech. 295, 305335.CrossRefGoogle Scholar
Frisch, U. 1995 Turbulence: The Legacy of A. N. Kolmogorov. Cambridge University Press.CrossRefGoogle Scholar
Gioia, G. & Chakraborty, P., , P. 2006 Turbulent friction in rough pipes and energy spectrum of phenomenological theory. Phys. Rev. Lett. 96, 044502.CrossRefGoogle ScholarPubMed
Hoyas, S. and Jimenez, J. 2005 Scaling the velocity fluctuations in turbulent channels up to Re τ = 2003. In Annual Research Briefs 2005, Center for Turbulence Research, 351–356.Google Scholar
Hoyas, S. & Jiménez, J. 2006 Scaling of the velocity fluctuations in turbulent channels up to Re τ = 2003. Phys. Fluids 18, 011702.CrossRefGoogle Scholar
Hultmark, M., Bailey, S. C. C. & Smits, A. J. 2010 Scaling of near-wall turbulence in pipe flow. J. Fluid Mech. 649, 103113.CrossRefGoogle Scholar
Hutchins, N., Nickels, T. B. Marusic, I. & Chong, M. S. 2009 Hot-wire spatial resolution issues in wall-bounded turbulence. J. Fluid Mech. 635, 103136.CrossRefGoogle Scholar
Kim, J., Moin, P. & Moser, R. 1987 Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177, 133166.CrossRefGoogle Scholar
Lee, C., Yeo, K. & Choi, J. 2004 Intermittent nature of acceleration in near wall turbulence. Phys. Rev. Lett. 92, 144502.CrossRefGoogle ScholarPubMed
Morrison, J. F., McKeon, B. J., Jiang, W. & Smits, A. J. 2004 Scaling of the streamwise velocity components in turbulent pipe flow. J. Fluid Mech. 508, 99131.CrossRefGoogle Scholar
Nagib, H. M., Chauhan, K. A. & Monkiewitz, P. A. 2007 Asymptotic state for zero pressure gradient turbulent boundary layers. Phil Trans. R. Soc. A 365, 755770.CrossRefGoogle ScholarPubMed
Schlichting, H. 1968 Boundary-Layer Theory. McGraw-Hill.Google Scholar
Schumacher, J. 2007 Sub-Kolmogorov-scale fluctuations in fluid turbulence. Europhys. Lett. 80, 54001-1–54001-6.CrossRefGoogle Scholar
Schumacher, J., Sreenivasan, K. R. & Yakhot, V. 2007 Asymptotic exponents from low-Reynolds-number flows. New. J. Phys. 9, 89 (doi:10.1088/1367-2630/9/4/089).CrossRefGoogle Scholar
Wu, X. & Moin, P. 2008 A direct numerical simulation study on the mean velocity characteristics in turbulent pipe flow. J. Fluid Mech. 608, 81112.CrossRefGoogle Scholar
Yakhot, V. 2006 Probability densities in strong turbulence. Physica D 215, 166174.CrossRefGoogle Scholar
Zagarola, M. V. & Smits, A. J. 1998 Mean flow scaling of turbulent pipe flow. J. Fluid Mech. 373, 3379.CrossRefGoogle Scholar
Zhao, R. & Smits, A. J. 2007 Wall-normal turbulence statistics in high Reynolds number pipe flow. J. Fluid Mech. 576, 457473.CrossRefGoogle Scholar