Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-28T20:50:51.607Z Has data issue: false hasContentIssue false

Scaling laws for segregation forces in dense sheared granular flows

Published online by Cambridge University Press:  18 October 2016

François Guillard*
Affiliation:
Aix-Marseille Université, CNRS, IUSTI UMR 7343, 13453 Marseille, France Particles and Grains Laboratory, School of Civil Engineering, University of Sydney, NSW 2006, Australia
Yoël Forterre
Affiliation:
Aix-Marseille Université, CNRS, IUSTI UMR 7343, 13453 Marseille, France
Olivier Pouliquen
Affiliation:
Aix-Marseille Université, CNRS, IUSTI UMR 7343, 13453 Marseille, France
*
Email address for correspondence: [email protected]

Abstract

In order to better understand the mechanism governing segregation in dense granular flows, the force experienced by a large particle embedded in a granular flow made of small particles is studied using discrete numerical simulations. Accurate force measurements have been obtained in a large range of flow parameters by trapping the large particle in a harmonic potential well to mimic an optical tweezer. Results show that positive or negative segregation lift forces (perpendicular to the shear) exist depending on the stress inhomogeneity. An empirical expression of the segregation force is proposed as a sum of a term proportional to the gradient of pressure and a term proportional to the gradient of shear stress, which both depend on the local friction and particle size ratio.

Type
Rapids
Copyright
© 2016 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aranson, I. S. & Tsimring, L. S. 2006 Patterns and collective behavior in granular media: theoretical concepts. Rev. Mod. Phys. 78, 641692.Google Scholar
Brey, J. J., Ruiz-Montero, M. J. & Moreno, F. 2005 Energy partition and segregation for an intruder in a vibrated granular system under gravity. Phys. Rev. Lett. 95, 098001.CrossRefGoogle Scholar
Da Cruz, F., Emam, S., Prochnow, M., Roux, J.-N. L. & Chevoir, F. 2005 Rheophysics of dense granular materials: discrete simulation of plane shear flows. Phys. Rev. E 72 (2), 021309.Google Scholar
Fan, Y. & Hill, K. M. 2011 Phase transitions in shear-induced segregation of granular materials. Phys. Rev. Lett. 106 (21), 218301.CrossRefGoogle ScholarPubMed
Fan, Y. & Hill, K. M. 2015 Shear-induced segregation of particles by material density. Phys. Rev. E 92 (2), 022211.Google Scholar
Félix, G. & Thomas, N. 2004a Evidence of two effects in the size segregation process in dry granular media. Phys. Rev. E 70, 051307.Google Scholar
Félix, G. & Thomas, N. 2004b Relation between dry granular flow regimes and morphology of deposits: formation of levées in pyroclastic deposits. Earth Planet. Sci. Lett. 221 (1–4), 197213.Google Scholar
Guazzelli, E. & Morris, J. F. 2011 A Physical Introduction To Suspension Dynamics. Cambridge University Press.Google Scholar
Guillard, F., Forterre, Y. & Pouliquen, O. 2014 Lift forces in granular media. Phys. Fluids 26 (4), 043301.Google Scholar
Hill, K. M., Caprihan, A. & Kakalios, J. 1997 Axial segregation of granular media rotated in a drum mixer: pattern evolution. Phys. Rev. E 56, 43864393.Google Scholar
Jenkins, J. T. & Mancini, F. 1989 Kinetic theory for binary mixtures of smooth, nearly elastic spheres. Phys. Fluids A 1 (12), 20502057.CrossRefGoogle Scholar
Kloss, C., Goniva, C., Hager, A., Amberger, S. & Pirker, S. 2012 Models, algorithms and validation for opensource DEM and CFD-DEM. Prog. Comput. Fluid Dyn. 12 (2), 140152.CrossRefGoogle Scholar
Kokelaar, B. P., Graham, R. L., Gray, J. M. N. T. & Vallance, J. W. 2014 Fine-grained linings of leveed channels facilitate runout of granular flows. Earth Planet. Sci. Lett. 385, 172180.Google Scholar
Marks, B., Rognon, P. & Einav, I. 2011 Grainsize dynamics of polydisperse granular segregation down inclined planes. J. Fluid Mech. 690 (2012), 499511.Google Scholar
Pouliquen, O., Delour, J. & Savage, S. B. 1997 Fingering in granular flows. Nature 386 (6627), 816817.Google Scholar
Savage, S. B. & Lun, C. K. K. 1988 Particle size segregation in inclined chute flow of dry cohesionless granular solids. J. Fluid Mech. 189, 311335.CrossRefGoogle Scholar
Schlick, C. P., Fan, Y., Umbanhowar, P. B., Ottino, J. M. & Lueptow, R. M. 2015 Granular segregation in circular tumblers: theoretical model and scaling laws. J. Fluid Mech. 765, 632652.Google Scholar
Thomas, N. 2000 Reverse and intermediate segregation of large beads in dry granular media. Phys. Rev. E 62 (1), 961974.Google ScholarPubMed
Thornton, A. R. & Gray, J. M. N. T. 2008 Breaking size segregation waves and particle recirculation in granular avalanches. J. Fluid Mech. 596, 261284.CrossRefGoogle Scholar
Tripathi, A. & Khakhar, D. V. 2011 Numerical simulation of the sedimentation of a sphere in a sheared granular fluid: a granular Stokes experiment. Phys. Rev. Lett. 107, 108001.CrossRefGoogle Scholar
Woodhouse, M. J., Thornton, A. R., Johnson, C. G., Kokelaar, B. P. & Gray, J. M. N. T. 2012 Segregation-induced fingering instabilities in granular free-surface flows. J. Fluid Mech. 709, 543580.CrossRefGoogle Scholar