Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-09T22:05:50.955Z Has data issue: false hasContentIssue false

Scaling laws for drag of a compliant body in an incompressible viscous flow

Published online by Cambridge University Press:  30 June 2008

LUODING ZHU*
Affiliation:
Department of Mathematical Sciences, Indiana University–Purdue University Indianapolis, Indianapolis, IN 46202, [email protected]

Abstract

Motivated by an important discovery on the drag scaling law (the 4/3 power law) of a flexible fibre in a flowing soap film by Alben et al. (Nature vol. 420, 2002, p.479) at high Reynolds numbers (2000<Re<40000), we investigate drag scaling laws at moderate Re for a compliant fibre tethered at the midpoint and submerged in an incompressible viscous flow using the immersed boundary (IB) method. Our work shows that the scaling of drag with respect to oncoming flow speed varies with Re, and the exponents of the power laws decrease monotonically from approximately 2 towards 4/3 as Re increases from 10 to 800.

Type
Papers
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alben, S. 2004 Drag reduction by self-similar bending and a transition to forward flight by a symmetry breaking instability. PhD thesis, Courant Institute of Mathematical Sciences, New York University.Google Scholar
Alben, S., Shelley, S. & Zhang, J. 2002 Drag reduction through self-similar bending of a flexible body. Nature 420, 479481.CrossRefGoogle ScholarPubMed
Alben, S., Shelley, S. & Zhang, J. 2004 How flexibility induces streamlining in two-dimensional flow. Phys. Fluids 16, 16941713.CrossRefGoogle Scholar
Atzberger, P. J., Kramer, P. R. & Peskin, C. S. 2006 A stochastic immersed boundary method for biological fluid dynamics at microscopic length scale. J. Comput. Phys. 224, 12551292.CrossRefGoogle Scholar
Barrett, D. S., Triantafyllou, M. S., Yue, D. K. P., Grosenbaugh, M. A. & Wolfgang, M. J. 1999 Drag reduction in fish-like locomotion. J. Fluid Mech. 392, 183212.CrossRefGoogle Scholar
Batchelor, G. K. 1967 An Introduction to Fluid Dynamics. Cambridge University Press.Google Scholar
Bushnell, D. M. & Moore, K. J. 1991 Drag reduction in Nature. Annu. Rev. Fluid Mech. 23, 6579.CrossRefGoogle Scholar
Cortez, R. & Minion, M. 2000 The blob projection method for immersed boundary problems. J. Comput. Phys. 161, 428453.CrossRefGoogle Scholar
Cottet, G. H. & Maitre, E. 2004 A level set formulation of immersed boundary methods for fluid-structure interaction problems. C.R. Acad. Sci. Paris I 338, 581586.CrossRefGoogle Scholar
Cottet, G. H. & Maitre, E. 2006 A level set method for fluid-structure interactions with immersed interfaces. Math. Models Meth. Appl. Sci. 16, 415438.CrossRefGoogle Scholar
Denny, M. W. 1994 Extreme drag forces and the survival of wind and water-swept organisms. J. Expl Biol. 195, 97115.CrossRefGoogle Scholar
Donea, J., Giuliani, S. & Halleux, J. P. 1982 An Arbitrary Lagrangian-Eulerian finite element method for transient dynamic fluid structure interactions. Comput. Meth. Appl. Mech. Engng 33, 689723.CrossRefGoogle Scholar
Fauci, L. J. & Fogelson, A. L. 1993 Truncated Newton methods and the modeling of complex elastic structures. Commun. Pure Appl. Maths 46, 787818.CrossRefGoogle Scholar
Fauci, L. J. & Peskin, C. S. 1988 A computational model of aquatic animal locomotion. J.Comput. Phys. 77, 85108.CrossRefGoogle Scholar
Fish, F. E. 1998 Imaginative solutions by marine organisms for drag reduction. In Proc. Intl Symp. on Seawater Drag Reduction, Newport, Rhode Island (ed. Meng, J. C. S.), pp. 443–450.Google Scholar
Fogelson, A. L. 1992 Continuum models of platelet aggregation: Formulation and mechanical properties. SIAM J. Appl. Maths 52, 10891110.CrossRefGoogle Scholar
Glowinski, R., Pan, T., Hesla, T., Joseph, D. & Periaux, J. 2001 A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: Application to particulate flow. J. Comput. Phys. 169, 363426.CrossRefGoogle Scholar
Glowinski, R., Pan, T. & Periaux, J. 1994 a A fictitious domain method for Dirichlet problem and applications. Comput. Meth. Appl. Mech. Engng 111, 283303.CrossRefGoogle Scholar
Glowinski, R., Pan, T. & Periaux, J. 1994 b A fictitious domain method for external incompressible viscous flow modeled by Navier-Stokes equations. Comput. Meth. Appl. Mech. Engng 112, 133148.CrossRefGoogle Scholar
Griffith, B. E. & Peskin, C. S. 2005 On the order of accuracy of the immersed boundary method: Higher order convergence rates for sufficient smooth problems. J. Comput. Phys. 208, 75105.CrossRefGoogle Scholar
Hughes, T. J. R., Liu, W. & Zimmerman, T. K. 1981 Lagrangian-Eulerian finite element formulation for incompressible viscous flows. Comput. Meth. Appl. Mech. Engng 29, 329349.CrossRefGoogle Scholar
Hou, T. Y., Li, Z. L., Osher, S., Zhao, H. K. 1997 A hybrid method for moving interface problems with application to the Hele-Shaw flow. J. Comput. Phys. 134, 236252.CrossRefGoogle Scholar
Kim, Y. & Peskin, C. S. 2007 Penalty immersed boundary method for an elastic boundary with mass. Phys. Fluids 19, 053103.CrossRefGoogle Scholar
Koehl, M. A. R. 1984 How do benthic organisms withstand moving water?. Am. Zool. 24, 5770.CrossRefGoogle Scholar
Koehl, M. A. R., Hunter, T. & Jed, J. 1991 How do body flexibility and length affect hydrodynamic-forces on sessile organisms in waves versus in currents. Am. Zool. 31, A60A60.Google Scholar
Lai, M. C. & Peskin, C. S. 2000 An immersed boundary method with formal second order accuracy and reduced numerical viscosity. J. Comput. Phys. 160, 705719.CrossRefGoogle Scholar
LeVeque, R. J. & Li, Z. L. 1994 The immersed interface method for elliptic equations with discontinuous coefficients and singular sources. SIAM J. Numer. Anal. 31, 10191044.CrossRefGoogle Scholar
LeVeque, R. J. & Li, Z. L. 1997 Immersed interface methods for Stokes flows with elastic boundaries or surface tension. SIAM J. Sci. Comput. 18, 709735.CrossRefGoogle Scholar
Li, Z. L. 2006 The Immersed Interface Method – Numerical Solutions of PDEs Involving Interfaces and Irregular Domains. SIAM, Philadelphia.Google Scholar
Li, Z. L. & Lai, M. C. 2001 Immersed interface methods for Navier-Stokes equations with singular forces. J. Comput. Phys. 171, 822842.CrossRefGoogle Scholar
Liu, W. K., Kim, D. K. & Tang, S. 2007 Mathematical foundations of the immersed finite element method. Comput. Mech. 39, 211222.CrossRefGoogle Scholar
Mittal, R. & Iaccarino, G. 2005 Immersed boundary methods. Annu. Rev. Fluid Mech. 37, 239261.CrossRefGoogle Scholar
Mori, Y. & Peskin, C. S. 2006 Implicit second-order immersed boundary method with boundary mass. J. Comput. Phys. (submitted).Google Scholar
Peskin, C. S. 1977 Flow patterns around heart valves: a numerical method. J. Comput. Phys. 25, 220252.CrossRefGoogle Scholar
Peskin, C. S. 2002 The immersed boundary method. Acta Numerica 11, 479517.CrossRefGoogle Scholar
Peskin, C. S. & McQueen, D. M. 1993 Computational biofluid dynamics. Contemp. Maths 141, 161186.CrossRefGoogle Scholar
Peskin, C. S. & McQueen, D. M. 1996 Fluid dynamics of the heart and its valves. In Case Studies in Mathematical Modeling: Ecology, Physiology, and Cell Biology (ed. Othmer, H. G., Adler, F. R., Lewis, M. A. & Dallon, J. C.), P. 309. Prentice-Hall.Google Scholar
Peskin, C. S. & Printz, B. F. 1993 Improved volume conservation in the computation of flows with immersed elastic boundaries. J. Comput. Phys. 105, 3346.CrossRefGoogle Scholar
Roma, A. M., Peskin, C. S. & Berger, M. J. 1999 An adaptive version of the immersed boundary method. J. Comput. Phys. 153, 509534.CrossRefGoogle Scholar
Schouveiler, L. & Boudaoud, A. 2006 The rolling up of sheets in a steady flow. J. Fluid Mech. 563, 7180.CrossRefGoogle Scholar
Steinburg, V. 2002 Bend and survive. Nature 420, 473473.CrossRefGoogle Scholar
Sulsky, D., Chen, Z. & Schreyer, H. L. 1994 A particle method for history-dependent materials. Comput. Mech. Appl. Mech. Engng 118, 179197.CrossRefGoogle Scholar
Sulsky, D., Zhou, S. J. & Schreyer, H. L. 1995 Application of a particle-in-cell method to solid mechanics. Comput. Phys. Commun. 87, 136152.CrossRefGoogle Scholar
Taira, K. & Colonius, T. 2007 The immersed boundary method: a projection approach. J. Comput. Phys. 225, 21182137.CrossRefGoogle Scholar
Tu, C. & Peskin, C. S. 1992 Stability and instability in the computation of flows with moving immersed boundaries: A comparison of three methods. SIAM J. Sci. Statist. Comput. 13, 13611376.CrossRefGoogle Scholar
Udaykumar, H. S., Shyy, W., Rao, M. M. 1996 A mixed Eulerian-Lagrangian method for fluid flows with complex and moving boundaries. Intl J. Numer. Meth. Fluids 22, 691712.3.0.CO;2-U>CrossRefGoogle Scholar
Vogel, S. 1984 Drag and flexibility in sessile organisms. Am. Zool. 24, 3744.CrossRefGoogle Scholar
Vogel, S. 1989 Drag and reconfiguration of broad leaves in high winds. J. Expl Bot. 40, 941948.CrossRefGoogle Scholar
Vogel, S. 1996 Life in Moving Fluids – The Physical Biology of Flow. Princeton University Press.Google Scholar
Wang, X. 2006 From immersed boundary method to immersed continuum method. Intl J. Multiscale Comput. Engng 4, 127145.CrossRefGoogle Scholar
Wang, X. 2007 An iterative matrix-free method in implicit immersed boundary/continuum methods. Computers Struct. 85, 739748.CrossRefGoogle Scholar
Wang, X. & Liu, W. K. 2004 Extended immersed boundary method using FEM and RKPM. Comput. Meth. Appl. Mech. Engng 193, 13051321.CrossRefGoogle Scholar
Wiggins, C. H. & Goldstein, R. E. 1998 Flexive and propulsive dynamics of elastica at low Reynolds number. Phys. Rev. Lett. 80, 38793882.CrossRefGoogle Scholar
Wu, T. Y. 1972 Cavity and wake flows. Annu. Rev. Fluid Mech. 4, 243284.CrossRefGoogle Scholar
Wu, T. Y., Whitney, A. K. & Lin, J. D. 1969 Wall effect in cavity flows. Calif. Inst. Technol. Rep. E-111A.5Google Scholar
Xu, J., Li, Z., Lowengrub, J. & Zhao, H. 2006 A level set method for interfacial flows with surfactant. J. Comput. Phys. 212, 590616.CrossRefGoogle Scholar
Ye, T., Mittal, R., Udaykumar, H. S. & Shyy, W. 1999 An accurate Cartesian grid method for viscous incompressible flows with complex immersed boundaries. J. Comput. Phys. 156, 209240.CrossRefGoogle Scholar
Zhang, L., Gersternberger, A., Wang, X. & Liu, W. K. 2004 Immersed finite element method. Comput. Meth. Appl. Mech. Engng 193, 20512067.CrossRefGoogle Scholar
Zhu, L. 2001 Simulation of a flapping flexible filament in a flowing soap film by the immersed boundary method. PhD thesis, Courant Institute of Mathematical Sciences, New York University.Google Scholar
Zhu, L. 2007 Viscous flow past an elastic fiber tethered at the middle point: vortex shedding. J. Fluid Mech. 587, 217234.CrossRefGoogle Scholar
Zhu, L. & Peskin, C. S. 2007 Drag of a flexible fiber in a 2D moving viscous fluid. Computers Fluids 36, 398406.CrossRefGoogle Scholar