Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-27T21:32:13.187Z Has data issue: false hasContentIssue false

A scaling law for the lift of hovering insects

Published online by Cambridge University Press:  09 October 2015

Jeongsu Lee
Affiliation:
Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul 08826, Korea
Haecheon Choi
Affiliation:
Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul 08826, Korea
Ho-Young Kim*
Affiliation:
Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul 08826, Korea
*
Email address for correspondence: [email protected]

Abstract

Insect hovering is one of the most fascinating acrobatic flight modes in nature, and its aerodynamics has been intensively studied, mainly through computational approaches. While the numerical analyses have revealed detailed vortical structures around flapping wings and resulting forces for specific hovering conditions, theoretical understanding of a simple unified mechanism enabling the insects to be airborne is still incomplete. Here, we construct a scaling law for the lift of hovering insects through relatively simple scaling arguments of the strength of the leading edge vortex and the momentum induced by the vortical structure. Comparison of our theory with the measurement data of 35 species of insects confirms that the scaling law captures the essential physics of lift generation of hovering insects. Our results offer a simple yet powerful guideline for biologists who seek the evolutionary direction of the shape and kinematics of insect wings, and for engineers who design flapping-based micro air vehicles.

Type
Papers
Copyright
© 2015 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bidkar, R. A., Kimber, M., Raman, A., Bajaj, A. K. & Garimella, S. V. 2009 Nonlinear aerodynamic damping of sharp-edged flexible beams oscillating at low Keulegan–Carpenter numbers. J. Fluid Mech. 634, 269289.CrossRefGoogle Scholar
Birch, J. M. & Dickinson, M. H. 2003 The influence of wing–wake interactions on the production of aerodynamic forces in flapping flight. J. Expl Biol. 206, 22572272.Google Scholar
Bos, F. M., Lentink, D., Van Oudheusden, B. W. & Bijl, H. 2008 Influence of wing kinematics on aerodynamic performance in hovering insect flight. J. Fluid Mech. 594, 341368.Google Scholar
Cheng, B., Sand, S. P., Barbera, G., Troolin, D. R., Strand, T. & Deng, X. 2013 Three-dimensional flow visualization and vorticity dynamics in revolving wings. Exp. Fluids 54, 112.Google Scholar
Dewey, P. A., Boschitsch, B. M., Moored, K. W., Stone, H. A. & Smits, A. J. 2013 Scaling laws for the thrust production of flexible pitching panels. J. Fluid Mech. 732, 2946.Google Scholar
Dickinson, M. H. 1996 Unsteady mechanisms of force generation in aquatic and aerial locomotion. Am. Zool. 36, 537554.CrossRefGoogle Scholar
Dickinson, M. H., Lehmann, F.-O. & Sane, S. P. 1999 Wing rotation and the aerodynamic basis of insect flight. Science 284, 19541960.Google Scholar
Dütsch, H., Durst, F., Becker, S. & Lienhart, H. 1998 Low-Reynolds-number flow around an oscillating circular cylinder at low Keulegan–Carpenter numbers. J. Fluid Mech. 360, 249271.CrossRefGoogle Scholar
Ellington, C. P. 1984a The aerodynamics of flapping animal flight. Am. Zool. 24, 95105.Google Scholar
Ellington, C. P. 1984b The aerodynamics of hovering insect flight. Part I: the quasi-steady analysis. Phil. Trans. R. Soc. Lond. B 305, 115.Google Scholar
Ellington, C. P. 1984c The aerodynamics of hovering insect flight. Part II: morphological parameters. Phil. Trans. R. Soc. Lond. B 305, 1740.Google Scholar
Ellington, C. P. 1984d The aerodynamics of hovering insect flight. Part III: kinematics. Phil. Trans. R. Soc. Lond. B 305, 4178.Google Scholar
Ellington, C. P., van den Berg, C., Willmott, A. P. & Thomas, A. L. R. 1996 Leading-edge vortices in insect flight. Nature 384, 626630.Google Scholar
Ennos, A. R. 1989 The kinematics and aerodynamics of the free flight of some Diptera. J. Expl Biol. 142, 4985.Google Scholar
Fry, S. N., Sayaman, R. & Dickinson, M. H. 2005 The aerodynamics of hovering flight in Drosophila. J. Expl Biol. 208, 23032318.CrossRefGoogle ScholarPubMed
Jardin, T., Farcy, A. & David, L. 2012 Three-dimensional effects in hovering flapping flight. J. Fluid Mech. 702, 102125.Google Scholar
Jeong, J. & Hussain, F. 1995 On the identification of a vortex. J. Fluid Mech. 285, 6994.Google Scholar
Jones, M. A. 2003 The separated flow of an inviscid fluid around a moving flat plate. J. Fluid Mech. 496, 405441.Google Scholar
Keulegan, G. H. & Carpenter, L. H. 1958 Forces on cylinders and plates in an oscillating fluid. J. Res. Natl Bur. Stand. 60, 423440.Google Scholar
Kweon, J. & Choi, H. 2010 Sectional lift coefficient of a flapping wing in hovering motion. Phys. Fluids 22, 071703.Google Scholar
Lee, J., Park, Y.-J., Jeong, U., Cho, K.-J. & Kim, H.-Y. 2013 Wake and thrust of an angularly reciprocating plate. J. Fluid Mech. 720, 545557.CrossRefGoogle Scholar
Lentink, D. & Dickinson, M. H. 2009 Rotational accelerations stabilize leading edge vortices on revolving fly wings. J. Expl Biol. 212, 27052719.Google Scholar
Liu, H. & Aono, H. 2009 Size effects on insect hovering aerodynamics: an integrated computational study. Bioinspir. Biomim. 4, 015002.CrossRefGoogle ScholarPubMed
Liu, Y. & Sun, M. 2008 Wing kinematics measurement and aerodynamics of hovering droneflies. J. Expl Biol. 211, 20142025.Google Scholar
Mou, X. L., Liu, Y. P. & Sun, M. 2011 Wing motion measurement and aerodynamics of hovering true hoverflies. J. Expl Biol. 214, 28322844.Google Scholar
Newman, J. N. 1977 Marine Hydrodynamics. MIT Press.CrossRefGoogle Scholar
Park, H. & Choi, H. 2012 Kinematic control of aerodynamic forces on an inclined flapping wing with asymmetric strokes. Bioinspir. Biomim. 7, 016008.CrossRefGoogle Scholar
Poelma, C., Dickson, W. & Dickinson, M. H. 2006 Time-resolved reconstruction of the full velocity field around a dynamically-scaled flapping wing. Exp. Fluids 41, 213225.Google Scholar
Sane, S. P. 2003 The aerodynamics of insect flight. J. Expl Biol. 206, 41914208.CrossRefGoogle ScholarPubMed
Sane, S. P. & Dickinson, M. H. 2002 The aerodynamic effects of wing rotation and a revised quasi-steady model of flapping flight. J. Expl Biol. 205, 10871096.Google Scholar
Shyy, W., Trizila, P., Kang, C. K. & Aono, H. 2009 Can tip vortices enhance lift of a flapping wing? AIAA J. 47, 289293.Google Scholar
Walker, S. M., Thomas, A. L. R. & Taylor, G. K. 2010 Deformable wing kinematics in free-flying hoverflies. J. R. Soc. Interface 7, 131142.Google Scholar
Wang, Z. J. 2004 The role of drag in insect hovering. J. Expl Biol. 207, 41474155.CrossRefGoogle ScholarPubMed
Weis-Fogh, T. 1973 Quick estimates of flight fitness in hovering animals, including novel mechanisms for lift production. J. Expl Biol. 59, 169230.Google Scholar
Willmott, A. P. & Ellington, C. P. 1997a The mechanics of flight in the hawkmoth Manduca sexta. Part I: kinematics of hovering and forward flight. J. Expl Biol. 200, 27052722.Google Scholar
Willmott, A. P. & Ellington, C. P. 1997b The mechanics of flight in the hawkmoth Manduca sexta. Part II: aerodynamic consequences of kinematic and morphological variation. J. Expl Biol. 200, 27232745.CrossRefGoogle Scholar
Wu, J.-Z., Ma, H.-Y. & Zhou, M.-D. 2006 Vorticity and Vortex Dynamics. Springer.Google Scholar
Supplementary material: File

Lee supplementary material

Lee supplementary material 1

Download Lee supplementary material(File)
File 26.7 KB