Article contents
Rough-wall turbulent boundary layers in the transition regime
Published online by Cambridge University Press: 21 April 2006
Abstract
This paper describes an experimental study of turbulent boundary layers over two-dimensional spanwise groove and three-dimensional sandgrain roughnesses in the ‘transition regime’ between hydraulically smooth and fully rough conditions. Mean-flow measurements show that a state of kinematic near-self-preservation is also reached by sandgrain roughness and not just by d-type grooved roughness alone as commonly believed; sandgrain roughness simply requires an order-of-magnitude-longer length to reach such a state. The two roughness Reynolds numbers demarcating the boundaries of the transition regime of k-type roughnesses are found to decrease with increasing roughness-element spanwise aspect ratio (span/height). A more important role of the upper-Reynolds-number limit of the transition regime in the drag behaviour is indicated. The two Reynolds-number limits of the transition regime correlate with the two critical Reynolds numbers that describe the stability of the vortex-shedding process existing behind a similar but isolated roughness element lying submerged in an otherwise laminar boundary layer. The results provide a guideline for reducing k-type rough-wall drag by lowering the spanwise aspect ratio of the roughness elements. The vortex-shedding process in rough-wall turbulent boundary layers is described by the stability parameter $U\tau (\overline{T}/\nu)^{\frac{1}{2}}$ whose value is the same for all roughnesses examined herein; here Uτ is the friction velocity, $\overline{T}$ is the mean time period of vortex shedding and v is the kinematic viscosity of the fluid.
- Type
- Research Article
- Information
- Copyright
- © 1987 Cambridge University Press
References
- 130
- Cited by