Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-26T02:17:35.994Z Has data issue: false hasContentIssue false

Roughness-induced turbulent wedges in a hypersonic blunt-body boundary layer

Published online by Cambridge University Press:  30 July 2014

A. Fiala
Affiliation:
Department of Aeronautics, Imperial College London, South Kensington, London SW7 2AZ, UK
R. Hillier*
Affiliation:
Department of Aeronautics, Imperial College London, South Kensington, London SW7 2AZ, UK
D. Estruch-Samper
Affiliation:
Department of Aeronautics, Imperial College London, South Kensington, London SW7 2AZ, UK Department of Mechanical Engineering, National University of Singapore, 117575, Singapore
*
Email address for correspondence: [email protected]

Abstract

This paper uses measurements of surface heat transfer to study roughness-induced turbulent wedges in a hypersonic boundary layer on a blunt cylinder. A family of wedges was produced by changing the height of an isolated roughness element, providing conditions in the following range: fully effective tripping, for the largest element, with a turbulent wedge forming immediately downstream of the element; a long wake, in length several hundred times the boundary layer thickness, leading ultimately to transition; and retention of laminar flow, for the smallest element. With appropriate element size, a fully intermittent wedge formed, comprising a clear train of turbulent spots.

Type
Papers
Copyright
© 2014 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acarlar, M. S. & Smith, C. R. 1987 A study of hairpin vortices in a laminar boundary layer. Part 1. Hairpin vortices generated by a hemisphere protuberance. J. Fluid Mech. 175, 141.CrossRefGoogle Scholar
Bernardini, M., Pirozzoli, S. & Orlandi, P. 2012 Compressibility effects on roughness-induced boundary layer transition. Intl J. Heat Fluid Flow 35, 4551.CrossRefGoogle Scholar
Berry, S. A. & Hamilton, H. H.2002 Discrete roughness effects on shuttle Orbiter at Mach 6. AIAA Paper 2002-2744.CrossRefGoogle Scholar
Berry, S. A. & Horvath, T. J. 2008 Discrete-roughness transition for hypersonic flight vehicles. J. Spacecr. Rockets 45, 216227.CrossRefGoogle Scholar
Berry, S. A., Horvath, T. J., Hollis, B. R., Thompson, R. A. & Hamilton II, H. H.1999 X-33 hypersonic boundary layer transition. AIAA Paper 99-3560.CrossRefGoogle Scholar
Casper, K. M., Beresh, S. J. & Schneider, S. P.2011a Pressure fluctuations beneath turbulent spots and instability wave packets in a hypersonic boundary layer. AIAA Paper 2011-0372.CrossRefGoogle Scholar
Casper, K. M., Beresh, S. J. & Schneider, S. P.2011b Spanwise growth of the turbulent spot pressure-fluctuation field in a hypersonic boundary layer. AIAA Paper 2011-3873.CrossRefGoogle Scholar
Chang, C.-L. & Choudhari, M. M. 2011 Hypersonic viscous flow over large roughness elements. Theor. Comput. Fluid Dyn. 25, 85104.CrossRefGoogle Scholar
Choudhari, M., Li, F., Chang, C. L., Norris, A. & Edwards, J.2013 Wake instabilities behind discrete roughness elements in high speed boundary layers. AIAA Paper 2013-0081.CrossRefGoogle Scholar
Choudhari, M., Li, F., Wu, W., Chang, C.-L., Edwards, J., Kegerise, M. & King, R.2010 Laminar–turbulent transition behind discrete roughness elements in a high-speed boundary layer. AIAA Paper 2009-0170.CrossRefGoogle Scholar
Cook, W. J. & Felderman, E. J. 1966 Reduction of data from thin-film heat-transfer gauges: a concise numerical technique. AIAA J. 4, 561562.CrossRefGoogle Scholar
Estruch-Samper, D., Ganapathisubramani, B., Vanstone, L. & Hillier, R.2012 Axisymmetric flare-induced separation of high-speed transitional boundary layers. In Proceedings of the 50th AIAA Aerospace Sciences Meeting. AIAA Paper 2012-067.CrossRefGoogle Scholar
Fedorov, A. 2011 Transition and stability of high-speed boundary layers. Annu. Rev. Fluid Mech. 43, 7995.CrossRefGoogle Scholar
Fiala, A., Hillier, R., Mallinson, S. G. & Wijensinghe, H. S. 2006 Heat transfer measurement of turbulent spots in a hypersonic blunt-body boundary layer. J. Fluid Mech. 555, 81111.CrossRefGoogle Scholar
Fischer, M. C. 1972a Spreading of a turbulent disturbance. AIAA J. 10, 957959.CrossRefGoogle Scholar
Fischer, M. C. 1972b Turbulent bursts and rings on a cone in helium at $M=7.6$ . AIAA J. 10, 13871388.CrossRefGoogle Scholar
Gad-el-Haq, M., Blackwelder, R. F. & Riley, J. J. 1981 On the growth of turbulent regions in laminar boundary layers. J. Fluid Mech. 110, 7396.CrossRefGoogle Scholar
Horvath, T. J., Berry, S. A., Merski, N. R. & Fitzgerald, S. M.2000 X-38 experimental aerothermodynamics. AIAA Paper 2000-2685.CrossRefGoogle Scholar
Horvath, T. J., Zalameda, J. N., Wood, W. A., Berry, S. A., Schwartz, R. J., Dantowitz, R. F., Spisz, T. S. & Taylor, J. C.2012 Global infrared observations of roughness induced transition on the space shuttle Orbiter. NATO RTO-MP-AVT-200, Art. 27.Google Scholar
James, C. S.1958 Observation of turbulent-burst geometry and growth in supersonic flow. NACA Tech. Rep. 4235.Google Scholar
Kegerise, M. A., King, R., Owens, L., Choudhari, M., Li, F., Chang, C. L. & Norris, A.2012 High-speed boundary-layer transition induced by an isolated roughness element. NATO RTO-MP-AVT-200, Art.  29.Google Scholar
Keyes, F. G.1952 The heat conductivity, viscosity, specific heat and Prandtl numbers for thirteen gases. Tech. Rep., Massachussetts Institute of Technology, Project Squid, No. 37.Google Scholar
Krishnan, L. & Sandham, N. D. 2007 Strong interaction of a turbulent spot with a shock-induced separation bubble. Phys. Fluids 19, 016102.CrossRefGoogle Scholar
Laderman, A. J. 1980 Adverse pressure gradient effects on supersonic boundary-layer turbulence. AIAA J. 18, 11861195.CrossRefGoogle Scholar
Mack, L. M.1984 Boundary layer linear stability theory. In Special Course on Stability and Transition of Laminar Flow. AGARD Rep. No. 709, vol. 3, pp. 1–81.Google Scholar
Mallinson, S. G., Hillier, R., Jackson, A. P., Kirk, D. C., Soltani, S. & Zanchetta, M. 2000 Gun tunnel flow calibration: defining input conditions for hypersonic flow computations. Shock Waves 10, 313322.CrossRefGoogle Scholar
Mee, D. J.2001 Transition measurements on a $5^{\circ }$ cone in the T4 shock tunnel. Res. Rep. No. 2001-2. University of Queensland.Google Scholar
Mee, D. J. 2002 Boundary-layer transition measurements in hypervelocity flows in a shock tunnel. AIAA J. 40, 15421548.CrossRefGoogle Scholar
Mee, D. J. & Goyne, C. P. 1996 Turbulent spots in boundary layers in a free-piston shock tunnel flow. Shock Waves 6, 337343.CrossRefGoogle Scholar
Morkovin, M. V. 1991 Panoramic view of changes in vorticity distribution on transition instabilities and turbulence. In Boundary Layer Stability and Transition to Turbulence, FED Series, vol. 114, pp. 112. ASME.Google Scholar
Morkovin, M. V., Reshotko, E. & Herbert, T. 1994 Transition in open flow systems – a reassessment. Bull. Am. Phys. Soc. 39, 1882.Google Scholar
Nagamatsu, H. T., Sheer, R. E. & Graber, B. C. 1967 Hypersonic laminar boundary-layer transition on 8-foot-long, $10^{\circ }$ cone, $M_1 = 9.1\text {--}16$ . AIAA J. 7, 12451252.CrossRefGoogle Scholar
Reda, D. C.1977 Boundary-layer transition experiments on sharp, slender cones in supersonic free flight. NSWC/NOL Tech. Rep. No. 77-59.Google Scholar
Reda, D. C. 1979 Boundary-layer transition experiments on sharp, slender cones in supersonic free flight. AIAA J. 17, 803810.CrossRefGoogle Scholar
Reda, D. C. 2002 Review and synthesis of roughness-dominated transition correlations for re-entry applications. AIAA J. 39 (2), 161167.Google Scholar
Redford, J. A., Sandham, N. D. & Roberts, G. T. 2010 Compressibility effects on boundary-layer transition induced by an isolated roughness element. AIAA J. 48, 28182830.CrossRefGoogle Scholar
Redford, J. A., Sandham, N. D. & Roberts, G. T. 2012 Numerical simulations of turbulent spots in supersonic boundary layers: effects of Mach number and wall temperature. Prog. Aerosp. Sci. 52, 6779.CrossRefGoogle Scholar
Reshotko, E. 2008 Transition issues for atmospheric re-entry. J. Spacecr. Rockets 45, 161164.CrossRefGoogle Scholar
Schneider, S. P. 2004 Hypersonic laminar–turbulent transition on circular cones and scramjet forebodies. Prog. Aerosp. Sci. 40, 150.CrossRefGoogle Scholar
Schneider, S. P. 2008 Effects of roughness on hypersonic boundary-layer transition. J. Spacecr. Rockets 45 (2), 193209.CrossRefGoogle Scholar
Schultz, D. L. & Jones, T. V. 1973; Heat-transfer measurements in short-duration hypersonic facilities. AGARDograph no. 165.Google Scholar
Softley, E. J., Graber, B. C. & Zempel, R. E. 1969 Experimental observation of transition of the hypersonic boundary layer. AIAA J. 7, 257263.CrossRefGoogle Scholar
Stetson, K. F. 1988 On cone frustrum pressure gradient effects on transition. AIAA J. 26, 500502.CrossRefGoogle Scholar
Stetson, K. F. & Rushton, G. H. 1967 Shock tunnel investigation of boundary layer transition at $M = 5.5$ . AIAA J. 5, 899906.Google Scholar
Thompson, R. A.2000 Review of X-33 hypersonic aerodynamic and aerothermodynamic development. In Proceedings of the 22nd Congress of the International Council of the Aeronautical Sciences, Harrogate, UK, Paper 323.Google Scholar
de Tullio, N., Paredes, P., Sandham, N. D. & Theofilis, V. 2013 Laminar–turbulent transition induced by a discrete roughness element in a supersonic boundary layer. J. Fluid Mech. 735, 613646.CrossRefGoogle Scholar
de Tullio, N. & Sandham, N. D.2012 Direct numerical simulations of roughness receptivity and transitional shock-wave/boundary-layer interactions. NATO RTO-MP-AVT-200, pp. 1–25.Google Scholar
Wheaton, B. M., Bartkowicz, M. D., Subbareddy, P. K., Schneider, S. P. & Candler, G. V.2011 Roughness-induced instabilities at Mach 6: a combined numerical and experimental study. AIAA Paper 2011-3248.CrossRefGoogle Scholar
Zanchetta, M. A.1996 Kinetic heating and transition studies at hypersonic speeds. PhD thesis, University of London.Google Scholar
Zanchetta, M. A. & Hillier, R. 1996 Blunt cone transition at hypersonic speeds: the transition reversal regime. In Transitional Boundary Layers in Aeronautics (ed. Henkes, R. A. W. M. & van Ingen, J. L.), pp. 433440. North-Holland.Google Scholar