Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-17T13:20:51.077Z Has data issue: false hasContentIssue false

The role of collective effects on settling velocity enhancement for inertial particles in turbulence

Published online by Cambridge University Press:  11 May 2018

P. D. Huck
Affiliation:
University of Washington – Department of Mechanical Engineering, Seattle, WA 98105, USA University of Lyon, ENS de Lyon, Univ. Claude Bernard, CNRS, Laboratoire de Physique, Lyon, 69007, France
C. Bateson
Affiliation:
University of Washington – Department of Mechanical Engineering, Seattle, WA 98105, USA
R. Volk
Affiliation:
University of Lyon, ENS de Lyon, Univ. Claude Bernard, CNRS, Laboratoire de Physique, Lyon, 69007, France
A. Cartellier
Affiliation:
University of Grenoble Alpes, LEGI, Grenoble, 38058, France
M. Bourgoin
Affiliation:
University of Lyon, ENS de Lyon, Univ. Claude Bernard, CNRS, Laboratoire de Physique, Lyon, 69007, France
A. Aliseda*
Affiliation:
University of Washington – Department of Mechanical Engineering, Seattle, WA 98105, USA
*
Email address for correspondence: [email protected]

Abstract

A particle-laden homogeneous isotropic turbulent flow is studied experimentally to understand the role of collective effects (e.g. particle–particle aerodynamic interactions caused by local particle accumulation) on the settling velocity of inertial particles (Stokes number: $0.3<St<0.6$ ). Conditional averaging of the particle vertical velocity on the local concentration identifies three settling regimes: modest enhancement by single particle–turbulence interactions in low concentration regions, rapid settling velocity increases in clusters at intermediate concentrations and saturation of the settling enhancement at large concentrations. The latter effect, associated with four-way coupling, displays qualitative agreement with simulations in the literature and is a new experimental observation. Fluctuations up to an order of magnitude larger than the background volume fraction are measured using Voronoï analysis. A model is developed following a classic volume-averaged multiphase flow methodology to provide an interpretation of the three settling regimes and quantitative predictions consistent with the measurements.

Type
JFM Papers
Copyright
© 2018 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aliseda, A., Cartellier, A., Hainaux, F. & Lasheras, J. C. 2002 Effect of preferential concentration on the settling velocity of heavy particles in homogeneous isotropic turbulence. J. Fluid Mech. 468, 77105.Google Scholar
Aliseda, A. & Lasheras, J. C. 2006 Effect of buoyancy on the dynamics of a turbulent boundary layer laden with microbubbles. J. Fluid Mech. 559, 307334.Google Scholar
Aliseda, A. & Lasheras, J. C. 2011 Preferential concentration and rise velocity reduction of bubbles immersed in a homogeneous and isotropic turbulent flow. Phys. Fluids 23 (9), 093301.Google Scholar
Anderson, T. B. & Jackson, R. 1967 Fluid mechanical description of fluidized beds. Equations of motion. Ind. Engng Chem. Fundam. 6 (4), 527539.Google Scholar
Ayyalasomayajula, S., Gylfason, A., Collins, L. R., Bodenschatz, E. & Warhaft, Z. 2006 Lagrangian measurements of inertial particle accelerations in grid generated wind tunnel turbulence. Phys. Rev. Lett. 97 (14), 144507.Google Scholar
Batchelor, G. K. 1959 The Theory of Homogeneous Turbulence. Cambridge University Press.Google Scholar
Bateson, C.2016 Experimental study of inertial particles in turbulence: preferential concentration, relative velocity and droplet collisions. PhD thesis, University of Washington.Google Scholar
Bateson, C. P. & Aliseda, A. 2012 Wind tunnel measurements of the preferential concentration of inertial droplets in homogeneous isotropic turbulence. Exp. Fluids 52 (6), 13731387.Google Scholar
Bosse, T., Kleiser, L. & Meiburg, E. 2006 Small particles in homogeneous turbulence: settling velocity enhancement by two-way coupling. Phys. Fluids 18 (2), 027102.Google Scholar
Eaton, J. K. 1994 Experiments and simulations on turbulence modification by dispersed particles. Appl. Mech. Rev. 47 (6), 4448.Google Scholar
Eaton, J. K. & Fessler, J. R. 1994 Preferential concentration of particles by turbulence. Intl J. Multiphase Flow 20 (Suppl), 169209.Google Scholar
Elghobashi, S. & Trusdell, G. C. 1993 On the two-way interaction between homogeneous turbulence and dispersed solid particles. I. Turbulence modification. Phys. Fluids A 5 (7), 17901801.CrossRefGoogle Scholar
Ferenc, J.-S. & Zoltan, N. 2007 On the size distribution of poisson voronoi cells. Physica A 385 (2), 518526.Google Scholar
Good, G. H., Ireland, P. J., Bewley, G. P., Bodenschatz, E., Collins, L. R. & Warhaft, Z. 2014 Settling regimes of inertial particles in isotropic turbulence. J. Fluid Mech. 759, R3.Google Scholar
Goto, S. & Vassilicos, J. C. 2008 Sweep-stick mechanism of heavy particle clustering in fluid turbulence. Phys. Rev. Lett. 100 (5), 054503.Google Scholar
Grabowksi, W. W. & Wang, L.-W. 2013 Growth of cloud droplets in a turbulent environment. Annu. Rev. Fluid Mech. 45, 293324.Google Scholar
Guazzelli, É. & Hinch, J. 2011 Fluctuations and instability in sedimentation. Annu. Rev. Fluid Mech. 43 (1), 97116.Google Scholar
Guazzelli, É. & Morris, J. 2012 A Physical Introduction to Suspension Dynamics. Cambridge University Press.Google Scholar
Hinch, J. 1988 Sedimentation of small particles. In Disorder and Mixing: Convection, Diffusion and Reaction in Random Materials and Processes (ed. Guyan, E., Nadal, J.-P. & Pomeau, Y.), chap. 162, Kluwer Academic Publishers.Google Scholar
Huisman, S. G., Barois, T., Bourgoin, M., Chouippe, A., Doychev, T., Huck, P., Morales-Bello, C. E., Uhlmann, M. & Volk, R. 2016 Columnar structure formation of a dilute suspension of settling spherical particles in a quiescent fluid. Phys. Rev. Fluids 1, 074204.Google Scholar
Jackson, R. 2000 The Dynamics of Fluidized Particles. Cambridge University Press.Google Scholar
Maxey, M. R. 1987 The gravitational settling of aerosol particles in homogeneous turbulence and random flow fields. J. Fluid Mech. 174 (1), 441465.Google Scholar
Maxey, M. R. & Corrsin, S. 1986 Gravitational settling of aerosol particles in randomly oriented cellular flow fields. J. Atmos. Sci. 43 (11), 1112.Google Scholar
Monchaux, R. 2012 Measuring concentration with Voronoï diagrams: the study of possible biases. New J. Phys. 14 (9), 095013.Google Scholar
Monchaux, R., Bourgoin, M. & Cartellier, A. 2010 Preferential concentration of heavy particles: a Voronöi analysis. Phys. Fluids 22 (10), 110.Google Scholar
Monchaux, R., Bourgoin, M. & Cartellier, A. 2012 Analyzing preferential concentration and clustering of inertial particles in turbulence. Intl J. Multiphase Flow 40, 118.Google Scholar
Monchaux, R. & Dejoan, A. 2017 Settling velocity and preferential concentration of heavy particles under two-way coupling effects in homogeneous turbulence. Phys. Rev. Fluids 2, 104302.Google Scholar
Nott, P. R., Guazzelli, É. & Pouliquen, O. 2011 The suspension balance model revisited. Phys. Fluids 23 (4), 043304.Google Scholar
Obligado, M., Teitelbaum, T., Cartellier, A., Mininni, P. & Bourgoin, M. 2014 Preferential concentration of heavy particles in turbulence. J. Turbul. 15, 293310.Google Scholar
Ouellette, N. T., Xu, H. & Bodenschatz, E. 2006 A quantitative study of three-dimensional Lagrangian particle tracking algorithms. Exp. Fluids 40 (2), 301313.Google Scholar
Pruppacher, H. R. & Klett, J. D. 2004 Microphysics of Clouds and Precipitation. Kluwer Academic Publishers.Google Scholar
Rosa, B., Parishani, H., Ayala, O. & Wang, L.-P. 2016 Settling velocity of small inertial particles in homogeneous isotropic turbulence from high-resolution DNS. Intl J. Multiphase Flow 83, 217231.Google Scholar
Shaw, R. A. 2003 Particle-turbulence interactions in atmospheric clouds. Annu. Rev. Fluid Mech. 37 (1), 473491.Google Scholar
Siebert, H., Gerashchenko, S., Gylfason, A., Lehmann, K., Collins, L. R., Shaw, R. A. & Warhaft, Z. 2010 Towards understanding the role of turbulence on droplets in clouds: in situ and laboratory measurements. Atmos. Res. 97 (4), 426437.Google Scholar
Sumbekova, S.2016 Clustering of inertial sub-kolmogorov particles: structure of clusters and their dynamics. PhD thesis, Université de Grenoble Joseph Fourier.Google Scholar
Sumbekova, S., Cartellier, A., Aliseda, A. & Bourgoin, M. 2017 Preferential concentration of inertial sub-Kolmogorov particles: the roles of mass loading of particles, Stokes numbers, and Reynolds numbers. Phys. Rev. Fluids 2 (2), 024302.CrossRefGoogle Scholar
Sundaram, S. & Collins, L. R. 1997 Collision statistics in an isotropic particle-laden turbulent suspension. Part 1. Direct numerical simulations. J. Fluid Mech. 335, 75109.Google Scholar
Tennekes, H. & Lumley, J. L. 2000 A First Course in Turbulence. MIT Press.Google Scholar
Wang, L.-P., Ayala, O. & Grabowski, W. W. 2007 Effects of aerodynamic interactions on the motion of heavy particles in a bidisperse suspension. J. Turbul. 8 (25), N25.CrossRefGoogle Scholar
Wang, L.-P. & Maxey, M. R. 1993 Settling velocity and concentration distribution of heavy particles in homogeneous isotropic turbulence. J. Fluid Mech. 256, 2768.Google Scholar
Wells, M. R. & Stock, D. E. 1983 The effects of crossing trajectories on the dispersion of particles in a turbulent flow. J. Fluid Mech 136, 3162.CrossRefGoogle Scholar
Wood, A. M., Hwang, W. & Eaton, J. K. 2005 Preferential concentration of particles in homogeneous and isotropic turbulence. Intl J. Multiphase Flow 31 (10), 12201230.Google Scholar
Yang, T. S. & Shy, S. S. 2003 The settling velocity of heavy particles in an aqueous near-isotropic turbulence. Phys. Fluids 15 (4), 868880.Google Scholar
Yang, T. S. & Shy, S. S. 2005 Two-way interaction between solid particles and homogeneous air turbulence: particle settling rate and turbulence modification measurements. J. Fluid Mech. 526, 171216.CrossRefGoogle Scholar