Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-09T21:52:55.513Z Has data issue: false hasContentIssue false

Rivulet instabilities

Published online by Cambridge University Press:  21 April 2006

Gerald W. Young
Affiliation:
Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL 60201, USA Present address: Department of Mathematics, University of Akron, Akron, OH 44325, USA.
Stephen H. Davis
Affiliation:
Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL 60201, USA

Abstract

We examine a three-dimensional rivulet flowing down a vertical plane. There exists a basic state with fully developed, unidirectional flow and straight contact lines. In the absence of contact-angle hysteresis the slope of the contact angle versus contact-line speed relationship measures the mobility of these contact lines. The stability characteristics of flat rivulets subject to long wave disturbances are examined using lubrication theory. We find that kinematic-wave instabilities are predicted for wide rivulets or rivulets with rather immobile contact lines, while capillary break-up is predicted for narrower rivulets with mobile contact lines. We find for all cases that the expression for the growth rate depends weakly on slip between the liquid and solid near the contact line, but strongly on the shape of the rivulet and the mobility of the contact lines. We discuss in detail the mechanisms by which the contact lines affect the instabilities.

Type
Research Article
Copyright
© 1987 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, R. F. & Biggin, C. M. 1974 Phys. Fluids 17, 287.
Atherton, R. W. & Homsy, G. M. 1976 Chem. Engng Commun. 2, 57.
Benjamin, T. B. 1957 J. Fluid Mech. 2, 554.
Benney, D. J. 1966 J. Maths & Phys. 45, 150.
Culkin, J. B. 1981 Rivulet meandering. Ph.D. thesis, Northwestern University, Evanston, Illinois.
Davis, S. H. 1980 J. Fluid Mech. 98, 225.
Dussan V., E. B. 1976 J. Fluid Mech. 77, 665.
Dussan V., E. B. 1979 Ann. Rev. Fluid Mech. 11, 371.
Dussan V. E. B. & Chow, R. T.-P. 1983 J. Fluid Mech. 137, 1.
Dussan V. E. B. & Davis, S. H. 1974 J. Fluid Mech. 65, 71.
Greenspan, H. P. 1978 J. Fluid Mech. 84, 125.
Hocking, L. M. 1977 J. Fluid Mech. 79, 209.
Hocking, L. M. 1983 Q. J. Mech. Appl. Maths. 36, 55.
Kern, J. 1969 Verfahrenstechnik 3, 425.
Kern, J. 1971 Verfahrenstechnik 5, 289.
Krantz, W. B. & Goren, S. L. 1970 I and EC Fundamentals 9, 107.
Ngan, C. C. & Dussan V., E. B. 1982 J. Fluid Mech. 118, 27.
Rayleigh, Lord 1879 Proc. R. Soc. Lond. A 10, 4.
Rosenblat, S. & Davis, S. H. 1984 Frontiers in Fluid Mechanics (ed. S. H. Davis & J. L. Lumley), p. 171. Springer.
Scott, M. R. & Watts, H. A. 1977 SIAM J. Num. Anal. 14, 40.
Silliman, W. J. & Scriven, L. E. 1978 Phys. Fluids 21, 2115.
Towell, G. D. & Rothfeld, L. B. 1966 AIChE J. 12, 972.
Weiland, R. H. & Davis, S. H. 1981 J. Fluid Mech. 107, 261.
Yih, C.-S. 1963 Phys. Fluids 6, 321.
Young, G. W. 1985 Dynamics and stability of flows with moving contact lines. Ph.D. thesis, Northwestern University, Evanston, Illinois.
Young, G. W. & Davis, S. H. 1985 Q. Appl. Maths 42, 403.