Article contents
The Richtmyer–Meshkov instability of a ‘V’ shaped air/$\text{SF}_{6}$ interface
Published online by Cambridge University Press: 03 August 2016
Abstract
The Richtmyer–Meshkov instability on a ‘V’ shaped air/SF$_{6}$ gaseous interface is experimentally studied in a shock tube. By the soap film technique, a discontinuous interface without supporting mesh is formed so that the initial conditions of the interface can be accurately controlled. Five ‘V’ shaped air/$\text{SF}_{6}$ interfaces with different vertex angles ($60^{\circ }$, $90^{\circ }$, $120^{\circ }$, $140^{\circ }$ and $160^{\circ }$) are created where the ratio of the initial interface amplitude to the wavelength varies to highlight the effects of initial condition on the flow characteristics. The wave patterns and interface morphologies are clearly identified in the high-speed schlieren sequences, which show that the interface deforms in a less pronounced manner with less vortices generated as the vertex angle increases. A regime change is observed in the interface width growth rate near a vertex angle of $160^{\circ }$, which provides an experimental evidence for the numerical results obtained by McFarland et al. (Phys. Scr. vol. T155, 2013, 014014). The growth rate of interface width in the linear phase is compared with the theoretical predictions from the classical impulsive model and a modified linear model, and the latter is proven to be effective for a moderate to large initial amplitude. It is found that the initial growth rate of the interface width is a non-monotone function of the initial vertex angle (amplitude–wavelength ratio), i.e. the interface width growth rate in the linear stage experiences an increase and then a decrease as the vertex angle increases. A similar conclusion was also reached by Dell et al. (Phys. Plasmas, vol. 22, 2015, 092711) numerically for a sinusoidal interface. Finally, the general behaviour of the interface width growth in the nonlinear stage can be well captured by the nonlinear model proposed by Dimonte & Ramaprabhu (Phys. Fluids, vol. 22, 2010, 014104).
JFM classification
- Type
- Papers
- Information
- Copyright
- © 2016 Cambridge University Press
References
- 33
- Cited by