Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-09T22:06:48.018Z Has data issue: false hasContentIssue false

Rheology of surface granular flows

Published online by Cambridge University Press:  04 January 2007

ASHISH V. ORPE
Affiliation:
Department of Chemical Engineering, Indian Institute of Technology, Bombay, Powai, Mumbai 400076, India
D. V. KHAKHAR
Affiliation:
Department of Chemical Engineering, Indian Institute of Technology, Bombay, Powai, Mumbai 400076, India

Abstract

Surface granular flow, comprising granular material flowing on the surface of a heap of the same material, occurs in several industrial and natural systems. The rheology of such a flow was investigated by means of measurements of velocity and number-density profiles in a quasi-two-dimensional rotating cylinder, half-filled with a model granular material – monosize spherical stainless-steel particles. The measurements were made at the centre of the cylinder, where the flow is fully developed, using streakline photography and image analysis. The stress profile was computed from the number-density profile using a force balance which takes into account wall friction. Mean-velocity and root-mean-square (r.m.s.)-velocity profiles are reported for different particle sizes and cylinder rotation speeds. The profiles for the mean velocity superimpose when distance is scaled by the particle diameter d and velocity by a characteristic shear rate and the particle diameter, where βm is the maximum dynamic angle of repose and βs is the static angle of repose. The maximum dynamic angle of repose is found to vary with the local flow rate. The scaling is also found to work for the r.m.s. velocity profiles. The mean velocity is found to decay exponentially with depth in the bed, with decay length λ = 1.1d. The r.m.s. velocity shows similar behaviour but with λ = 1.7d. The r.m.s. velocity profile shows two regimes: near the free surface the r.m.s. velocity is nearly constant and below a transition point it decays linearly with depth. The shear rate, obtained by numerical differentiation of the velocity profile, is not constant anywhere in the layer and has a maximum which occurs at the same depth as the transition in the r.m.s. velocity profile. Above the transition point the velocity distributions are Gaussian and below the transition point the velocity distributions gradually approach a Poisson distribution. The shear stress increases roughly linearly with depth. The variation in the apparent viscosity η with r.m.s. velocity u shows a relatively sharp transition at the shear-rate maximum, and in the region below this point the apparent viscosity η ∼ u−1.5. The measurements indicate that the flow comprises two layers: an upper low-viscosity layer with a nearly constant r.m.s. velocity and a lower layer of increasing viscosity with a decreasing r.m.s. velocity. The thickness of the upper layer depends on the local flow rate and is independent of particle diameter while the reverse is found to hold for the lower-layer thickness. The experimental data is compared with the predictions of three models for granular flow.

Type
Papers
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Andreotti, B., Claudin, P. & Douady, S. 2002a Selection of dune shapes and velocities part 1: Dynamics of sand wind and barchans. Eur. Phys. J. B 28, 312339.Google Scholar
Andreotti, B., Claudin, P. & Douady, S. 2002b Selection of dune shapes and velocities part 2: A two-dimensional modelling. Eur. Phys. J. B 28, 341352.CrossRefGoogle Scholar
Aranson, I. S. & Tsimring, L. S. 2002 Continuum theory of partially fluidized granular flows. Phys. Rev. E 65, 061303.CrossRefGoogle ScholarPubMed
Azanza, E., Chevoir, F. & Moucheront, P. 1999 Experimental study of collisional granular flows down an inclined plane. J. Fluid Mech. 400, 199227.CrossRefGoogle Scholar
Bocquet, L., Losert, W., Schalk, D., Lubensky, T. C. & Gollub, J. P. 2001 Granular shear flow dynamics and forces: Experiment and continuum theory. Phys. Rev. E 65, 011307.CrossRefGoogle ScholarPubMed
Bonamy, D., Daviaud, F. & Laurent, L. 2002a Experimental study of granular surface flows via a fast camera: A continuous description. Phys. Fluids 14, 16661673.CrossRefGoogle Scholar
Bonamy, D., Daviaud, F., Laurent, L., Bonetti, M. & Bouchaud, J. P. 2002b Multiscale clustering in granular surface flows. Phys. Rev. Lett. 89, 034301.CrossRefGoogle ScholarPubMed
Bonamy, D., Faucherand, B., Planelle, M., Daviaud, F. & Laurent, L. 2001 Granular surface flows in rotating drum: experiments and continuous description. In Powders and Grains (ed. Kishino, Y.), pp. 463466. Swets and Zeitlinger, Lisse.Google Scholar
Bonamy, D. & Mills, D. 2003 Diphasic non-local model for granular surface flows. Europhys. Lett. 63, 4248.CrossRefGoogle Scholar
Bouchaud, J. P., Cates, M. E., Ravi Prakash, J. & Edwards, S. F. 1994 A model for the dynamics of sandpile surface. J. Phys. Paris I 4, 13831409.Google Scholar
Bounhoure, C., Brunet, Y. & Merlen, A. 2002 Hydrodynamic study of sedimantation flows and avalanches. Powder Technol. 125, 306312.CrossRefGoogle Scholar
Boutreux, T. & de Gennes, P. G. 1996 Surface flows of granular mixtures: I. general principles and minimal model. J. Phys. Paris I 6, 12951304.Google Scholar
Boutreux, T., Raphaël, E. & de Gennes, P. G. 1998 Surface flows of granular materials: A modified picture for thick avalanches. Phys. Rev. E 58, 46924700.CrossRefGoogle Scholar
Campbell, C. S. 1990 Rapid granular flows. Annu. Rev. Fluid Mech. 22, 5792.CrossRefGoogle Scholar
Courrech-DuPont, S., Fischer, R., Gondret, P., Perrin, B. & Rabaud, M. 2005 Instantaneous velocity profiles during granular avalanches. Phys. Rev. Lett. 94, 048003.CrossRefGoogle Scholar
DaCruz, F., Emam, S., Prochnow, M., Roux, J.-N. & Chevoir, F. 2005 Rheophysics of dense granular materials: Discrete simulation of planar shear flows. Phys. Rev. E 72, 021309.CrossRefGoogle Scholar
Douady, S., Andreotti, B. & Daerr, A. 1999 On granular surface equations. Eur. Phys. J. B 11, 131142.Google Scholar
Hill, K. M., Gioia, G. & Tota, V. V. 2003 Structure and kinematics in dense free-surface flow. Phys. Rev. Lett. 91, 064302.Google Scholar
Hutter, K. 1997 Snow and glacier rheology. Appl. Rheol. 7, 266276.CrossRefGoogle Scholar
Hutter, K., Koch, T. & Savage, S. 1995 The dynamics of avalanches of granular materials from initiation to runout. part ii. experiments. Acta Mech. 109, 127143.CrossRefGoogle Scholar
Jain, N., Ottino, J. M. & Lueptow, R. M. 2002 An experimental study of the flowing granular layer in a rotating tumbler. Phys. Fluids 14, 572582.CrossRefGoogle Scholar
Jain, N., Ottino, J. M. & Lueptow, R. M. 2004 Effect of interstitial fluid on a granular flowing layer. J. Fluid Mech. 508, 2344.Google Scholar
Jop, P., Forterre, Y. & Pouliquen, O. 2005 Crucial role of side walls for granular surface flows: consequences for the rheology. J. Fluid Mech. 541, 167192.Google Scholar
Josserand, C., Lagree, P. Y. & Lhuillier, D. 2004 Stationary shear flows of dense granular materials: a tentative continuum modelling. Eur. Phys. J. E 14, 127135.CrossRefGoogle ScholarPubMed
Khakhar, D. V., McCarthy, J. J., Shinbrot, T. & Ottino, J. M. 1997 Transverse flow and mixing of granular materials in a rotating cylinder. Phys. Fluids 9, 3143.CrossRefGoogle Scholar
Khakhar, D. V., Orpe, A. V., Andresén, P. & Ottino, J. M. 2001a Surface flows of granular materials: model and experiments in heap formation. J. Fluid Mech. 441, 255264.Google Scholar
Khakhar, D. V., Orpe, A. V. & Hajra, S. K. 2005 Models for granular flow: Comparisons to experimental measurements. In Powders and Grains 2005 (ed. Garcia-Rojo, Y., Hermann, H. J. & McNamara, S.), pp. 785793. Balkema.Google Scholar
Khakhar, D. V., Orpe, A. V. & Ottino, J. M. 2001b Surface granular flows: Two related examples. Adv. Complex Systems 4, 407417.Google Scholar
Komatsu, T. S., Inagaki, S., Nakagawa, N. & Nasuno, S. 2001 Creep motion in a granular pile exhibiting steady surface flow. Phys. Rev. Lett. 86, 17571760.CrossRefGoogle Scholar
Longo, S. & Lamberti, A. 2002 Grain shear flow in rotating drum. Exps. Fluids 32, 313325.CrossRefGoogle Scholar
Makse, H. A. 1999 Continuous avalanche segregation of granular mixtures in thin rotating drums. Phys. Rev. Lett. 83, 31863189.Google Scholar
Mehta, A., ed. 1994 Granular Matter: An Interdisciplinary Approach. Springer.CrossRefGoogle Scholar
MiDi, G. D. R. 2004 On dense granular flows. Eur. Phys. J. E 14, 341365.CrossRefGoogle Scholar
Mills, P., Loggia, D. & Tixier, M. 1999 Model for a stationary dense granular flow along an inclined wall. Europhys. Lett. 45 (6), 733738.Google Scholar
Mohan, L. S., Nott, P. & Rao, K. K. 1997 Fully developed flow of coarse granular materials through a vertial channel. Chem. Engng Sci. 52, 913933.CrossRefGoogle Scholar
Mohan, L. S., Nott, P. & Rao, K. K. 2002 A frictional cosserat model for the slow shearing of granular materials. J. Fluid Mech. 457, 377409.Google Scholar
Mueth, D. M. 2003 Measurement of particles dynamics in slow, dense granular couette flow. Phys. Rev. E 67, 011304.CrossRefGoogle ScholarPubMed
Mueth, D. M., Debregeas, G. F., Karczmar, G. S., Eng, P. J., Nagel, S. R. & Jaeger, H. M. 2000 Signatures of granular microstructure in dense granular flows. Nature 406, 385388.CrossRefGoogle Scholar
Nakagawa, M., Altobelli, S. A., Caprihan, A., Fukushima, E. & Jeong, E. K. 1993 Non-invasive measurements of granular flows by resonance imaging. Exps. Fluids 16, 5460.CrossRefGoogle Scholar
Nedderman, R. M. 1992 Statics and Kinematics of Granular Materials. Cambridge University Press.CrossRefGoogle Scholar
Orpe, A. V. & Khakhar, D. V. 2001 Scaling relations for granular flow in quasi-two-dimensional rotating cylinders. Phys. Rev. E 64, 031302.Google Scholar
Orpe, A. V. & Khakhar, D. V. 2004 Solid-fluid transition in a granular shear flow. Phys. Rev. Lett. 93, 068001.CrossRefGoogle Scholar
Peray, K. 1986 The Rotary Cement Kiln. Chemical Publishing Company.Google Scholar
Perry, R. H. & Green, D. W. 1997 Perry's Chemical Engineers' Handbook, 7th Edn. McGraw-Hill.Google Scholar
Pouliquen, O., Forterre, Y. & Le Dizes, S. 2001 Slow dense granular flows as a self-induced process. Adv. Comp. Sys 4 (4), 441450.CrossRefGoogle Scholar
Press, W. H., Teukolsky, S. A., Vellerling, W. T. & Flannery, B. P. 1994 Numerical Recipes in Fortran: The Art of Scientific Computing, 2nd Edn., chap. 10. Cambridge University Press.Google Scholar
Quartier, L., Andreotti, B., Douady, S. & Daerr, A. 2000 Dynamics of a grain on a sandpile model. Phys. Rev. E 62, 82998307.CrossRefGoogle ScholarPubMed
Rajchenbach, J. 2003 Dense, rapid flows of inelastic grains under gravity. Phys. Rev. Lett. 90 (14), 144302.CrossRefGoogle ScholarPubMed
Rajchenbach, J., Clement, E. & Duran, J. 1995 Experiments in model granular media : A study of gravity flows. In Fractal Aspects of Materials (Family, F., Meakin, P., Sapoval, B. & Wool, R.), vol. 327, pp. 525–528. Mat. Res. Soc. Symposium, Pittsburgh.Google Scholar
Renouf, M., Bonamy, D., Dubois, F. & Alart, P. 2005 Numerical simulation of two-dimensional steady granular flows in rotating drum: On surface flow rheology. Phys. Fluids 24, 103303.CrossRefGoogle Scholar
Savage, S. B. 1998 Analyses of slow high-concentration flows of granular materials. J. Fluid Mech. 377, 126.CrossRefGoogle Scholar
Taberlet, N., Richard, P., Valance, A., Losert, W., Pasini, J. M., Jenkins, J. T. & Delannay, R. 2003 Superstable granular heap in a thin channel. Phys. Rev. Lett. 91, 264301.CrossRefGoogle Scholar
Volfson, D., Tsimring, L. S. & Aranson, I. S. 2003 Partially fluidized shear granular flows: Continuum theory and molecular dynamics simulations. Phys. Rev. E 68, 021301.Google Scholar
Wang, Z. & Zheng, X. 2004 Theoretical prediction of creep flux in aeolian sand transport. Powder Technol. 139.CrossRefGoogle Scholar
Zanuttigh, B. & Lamberti, A. 2002 Granular flow in equilibrium with the bottom: Experimental analysis and theoretical predictions. Nonlinear Proc. Geophys. 9, 207220.CrossRefGoogle Scholar