Article contents
Revisiting the subgrid-scale Prandtl number for large-eddy simulation
Published online by Cambridge University Press: 03 August 2016
Abstract
The subgrid-scale (SGS) Prandtl number ($Pr$) is an important parameter in large-eddy simulation. Prior models often assume that the ‘$-5/3$’ inertial subrange scaling applies to the wavenumber range from 0 to $k_{\unicode[STIX]{x1D6E5}}$ (the wavenumber corresponding to the filter scale $\unicode[STIX]{x1D6E5}$) and yield a $Pr$ that is stability-independent and scale-invariant, which is inconsistent with experimental data and the results of dynamic models. In this study, the SGS Prandtl number is revisited by solving the co-spectral budgets of momentum and heat fluxes in an idealized but thermally stratified atmospheric surface layer. The SGS Prandtl number from the co-spectral budget model shows a strong dependence on the atmospheric stability and increases (decreases) as the atmosphere becomes stable (unstable), which is in good agreement with recent field experimental data. The dependence of $Pr$ on the filter scale is also captured by the co-spectral budget model: as the filter scale becomes smaller, the SGS Prandtl number decreases. Finally, the value of SGS Prandtl number under neutral conditions is shown to be caused by the dissimilarity between momentum and heat in the pressure decorrelation term and the flux transfer term. When the dissimilarity exists only in the flux transfer term, the fact that under neutral conditions the SGS Prandtl number is usually smaller than the turbulent Prandtl number for Reynolds-averaged Navier–Stokes simulations is an indication of a stronger spectral transfer coefficient for heat than for momentum. The model proposed in this study can be readily implemented.
- Type
- Rapids
- Information
- Copyright
- © 2016 Cambridge University Press
References
- 11
- Cited by