Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-28T06:31:09.889Z Has data issue: false hasContentIssue false

Results of an attempt to generate a homogeneous turbulent shear flow

Published online by Cambridge University Press:  28 March 2006

W. G. Rose
Affiliation:
Department of Mechanics, The Johns Hopkins University

Abstract

An approximately homogeneous turbulent shear flow is generated in an open-return wind tunnel test-section by a plane parallel-rod grid of uniform rod diameter and non-uniform rod spacing. The grid design is based upon an analysis by Owen & Zienkiewicz (1957). Hot-wire measurements taken in this flow include mean velocities, component turbulence intensities, shear and two-point space correlations, and energy spectra. In addition, microscales, obtained both from instantaneous time derivatives of the hot-wire signal and from two-point space correlations, and integral scales, calculated both from correlations and energy spectra, are reported.

Based upon these results, it is concluded that, far enough away from the grid and the test-section wall boundary layers:

  1. The turbulence intensities are maintained at uniform values by the nearly constant mean shear.

  2. The turbulent shear stress approaches an asymptotic value.

  3. Measured two-point space correlation coefficients and one-dimensional energy spectra attain self-preserving forms.

  4. When distance downstream of the grid is measured in terms of the number of ‘local’ grid rod spacings, (see discussion of microscales obtained from time derivatives), the Taylor microscale defined by the correlation coefficient Ruu(rX, 0, 0) grows linearly with this ‘effective’ distance over most of the region measured.

  5. The limited number of integral scale determinations and experimental uncertainty allow only the statements that the magnitude of the longitudinal scale is roughly one-eighth the lateral dimension of the square test-section and tends to increase slightly with ‘effective’ distance from the grid.

  6. The lateral integral scales are approximately one-half the longitudinal scales and also increases with distance from the grid.

  7. The integral scale which characterizes the size of the eddy primarily responsible for momentum transfer is roughly one-tenth the test-section lateral dimension (measured at one point only).

Type
Research Article
Copyright
© 1966 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Batchelor, G. K. 1949 Proc. Roy. Soc., A 195, 513.
Batchelor, G. K. & Proudman, I. 1956 Phil. Trans., A 248, 369.
Batchelor, G. K. & Stewart, R. W. 1950 Quart. J. Mech. Appl. Math. 3, 1.
Boussinesq, J. 1877 Mem. prés. par div. sav., Paris, 23, 46.
Burgers, J. M. & Mitchner, M. 1953 Proc. K. Akad. Wet. Amst., B 56, 228, 343.
Collis, D. C. 1952 Aero. Quart. 4, 9.
Comte-Bellot, G. 1965 Publ. Scien. et Tech. du Ministere de l'Air, no. 419, 1.
Comte-Bellot, G. & Corrsin, S. 1965 The use of a contraction to improve the isotropy of grid-generated turbulence. Manuscript submitted for publication.
Corrsin, S. 1957 Naval Hydrodynamics Pub. 515, Nat. Acad. Sci./Nat. Res. Council, U.S. Gov't P.O., no. 373. Washington, D.C.
Corrsin, S. 1963 Handbuch der Physik, 8/2, 524.
Craya, A. 1958 Publ. Scien. et Tech. du Ministere de l'Air, no. 345, 1.
Deissler, R. G. 1961 Phys. Fluids, 10, 1187.
Dryden, H. L., Schubauer, G. B., Mock, W. C. & Skramstad, H. K. 1937 NACA Rep. no. 581.
Fox, J. 1964 Phys. Fluids, 7, 562.
Frenkiel, F. N. 1954 Aero. Quart. 5, 1.
Gibson, M. M. 1963 J. Fluid Mech. 15, 16.
Grant, H. L. 1958 J. Fluid Mech. 4, 14.
Hinze, J. O. 1959 Turbulence. New York: McGraw-Hill.
Hubbard, P. G. 1957 State Univ. of Iowa Studies in Engr. Bull. 37, 1.
Von Kármán, Th. 1937 J. Aero. Sci. 4, no. 4, 131.
Kolpin, M. A. 1964 J. Fluid Mech. 18, 52.
Laufer, J. 1951 NACA Rep. no. 1053, 15.
Lin, C. C. 1953 Quart. Appl. Math. 10, 29.
Lumley, J. L. 1965 Phys. Fluids, 8, 1056.
Mccarthy, J. H. 1964 J. Fluid Mech. 19, 49.
Owen, D. R. & Zienkiewicz, H. K. 1957 J. Fluid Mech. 2, 52.
Pasceri, R. E. & Friedlander, S. K. 1960 Can. J. Chem. Engr. no. 212.
Prandtl, L. 1925 Z. angew. Math Mech. 5, 13.
Reis, F. B. 1952 Doctoral Dissertation, Dept. Math. M.I.T. 1.
Rose, W. G. 1962 J. Appl. Mech. 29, 61.
Taylor, G. I. 1915 Phil. Trans., A 215, 1.
Taylor, G. I. & Batchelor, G. K. 1949 Quart. J. Mech. Appl. Math. 2, 1.
Townsend, A. A. 1954 Quart. J. Mech. Appl. Math. 7, 10.
Townsend, A. A. 1956 The Structure of Turbulent Shear Flow. Cambridge University Press.
Traugott, S. C. 1958 NACA TN, no. 4125, 1.
Uberoi, M. S. & Kovasznay, L. S. G. 1953 Quart. Appl. Math. 10, 37.