Published online by Cambridge University Press: 06 March 2017
The fate of small particles in turbulent flows depends strongly on the velocity gradient properties of the surrounding fluid, such as rotation and strain rates. For non-inertial (fluid) particles, the restricted Euler model provides a simple low-dimensional dynamical system representation of Lagrangian evolution of velocity gradients in fluid turbulence, at least for short times. Here, we derive a new restricted Euler dynamical system for the velocity gradient evolution of inertial particles, such as solid particles in a gas, or droplets and bubbles in turbulent liquid flows. The model is derived in the limit of small (sub-Kolmogorov-scale) particles and low Stokes number. The system exhibits interesting fixed points, stability and invariant properties. Comparisons with data from direct numerical simulations show that the model predicts realistic trends such as the tendency of increased straining over rotation along heavy particle trajectories and, for light particles such as bubbles, the tendency of reduced self-stretching of the strain rate.