Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-08T10:05:56.248Z Has data issue: false hasContentIssue false

Response of a laboratory aquifer to rainfall

Published online by Cambridge University Press:  20 October 2014

A. Guérin*
Affiliation:
Institut de Physique du Globe de Paris, Université Paris Diderot, 1 rue Jussieu, 75238 Paris, France
O. Devauchelle
Affiliation:
Institut de Physique du Globe de Paris, Université Paris Diderot, 1 rue Jussieu, 75238 Paris, France
E. Lajeunesse
Affiliation:
Institut de Physique du Globe de Paris, Université Paris Diderot, 1 rue Jussieu, 75238 Paris, France
*
Email address for correspondence: [email protected]

Abstract

We investigate the response of a laboratory aquifer submitted to artificial rainfall, with an emphasis on the early stage of a rain event. In this almost two-dimensional experiment, the infiltrating rainwater forms a groundwater reservoir which exits the aquifer through one side. The resulting outflow resembles a typical stream hydrograph: the water discharge increases rapidly during rainfall and decays slowly after the rain has stopped. The Dupuit–Boussinesq theory, based on Darcy’s law and the shallow-water approximation, quantifies these two asymptotic regimes. At the early stage of a rainfall event, the discharge increases linearly with time, at a rate proportional to the rainfall rate to the power of ${\textstyle \frac{3}{2}}$. Long after the rain has stopped, it decreases as the squared inverse of time (Boussinesq, C. R. Acad. Sci., vol. 137, 1903, pp. 5–11). We compare these predictions with our experimental data.

Type
Rapids
Copyright
© 2014 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdul, A. S. & Gillham, R. W. 1984 Laboratory studies of the effects of the capillary fringe on streamflow generation. Water Resour. Res. 20 (6), 691698.Google Scholar
Andermann, C., Longuevergne, L., Bonnet, S., Crave, A., Davy, P. & Gloaguen, R. 2012 Impact of transient groundwater storage on the discharge of Himalayan rivers. Nat. Geosci. 5 (2), 127132.Google Scholar
Beven, K. 1981 Kinematic subsurface stormflow. Water Resour. Res. 17 (5), 14191424.Google Scholar
Boussinesq, J. 1903 Sur un mode simple d’écoulement des nappes d’eau d’infiltration à lit horizontal, avec rebord vertical tout autour lorsqu’une partie de ce rebord est enlevée depuis la surface jusqu’au fond. C. R. Acad. Sci. Paris 137, 511.Google Scholar
Brutsaert, W. 2005 Hydrology: an Introduction. Cambridge University Press.Google Scholar
Brutsaert, W. & Lopez, J. P. 1998 Basin-scale geohydrologic drought flow features of riparian aquifers in the Southern Great Plains. Water Resour. Res. 34 (2), 233240.Google Scholar
Brutsaert, W. & Nieber, J. L. 1977 Regionalized drought flow hydrographs from a mature glaciated plateau. Water Resour. Res. 13 (3), 637643.Google Scholar
Chapman, T. G. 2003 Modelling stream recession flows. Environ. Model. Softw. 18 (8), 683692.Google Scholar
Devauchelle, O., Petroff, A. P., Seybold, H. F. & Rothman, D. H. 2012 Ramification of stream networks. Proc. Natl Acad. Sci. USA 109 (51), 2083220836.CrossRefGoogle ScholarPubMed
Dupuit, A. 1863 Études Théoriques et Pratiques sur la Mouvement des Eaux. Dunod.Google Scholar
Erhel, J., De Dreuzy, J.-R. & Poirriez, B. 2009 Flow simulation in three-dimensional discrete fracture networks. SIAM J. Sci. Comput. 31 (4), 26882705.Google Scholar
Henderson, F. M. & Wooding, R. A. 1964 Overland flow and groundwater flow from a steady rainfall of finite duration. J. Geophys. Res. 69 (8), 15311540.Google Scholar
Horton, R. E. 1945 Erosional development of streams and their drainage basins; hydrophysical approach to quantitative morphology. Geol. Soc. Am. Bull. 56 (3), 275370.Google Scholar
Huyck, A. A. O., Pauwels, V. & Verhoest, N. E. C. 2005 A base flow separation algorithm based on the linearized Boussinesq equation for complex hillslopes. Water Resour. Res. 41 (8), W08415.Google Scholar
Ibrahim, H. A. & Brutsaert, W. 1965 Inflow hydrographs from large unconfined aquifers. J. Irrig. Drain. Div. Am. Soc. Civ. Eng. 91, 2138.Google Scholar
Johnson, A. I. 1967 Specific Yield: Compilation of Specific Yields for Various Materials. US Government Printing Office.Google Scholar
Kirchner, J. W. 2003 A double paradox in catchment hydrology and geochemistry. Hydrol. Process. 17 (4), 871874.Google Scholar
Kirchner, J. W. 2009 Catchments as simple dynamical systems: catchment characterization, rainfall-runoff modeling, and doing hydrology backward. Water Resour. Res. 45 (2), W02429.CrossRefGoogle Scholar
Kirchner, J. W., Feng, X. & Neal, C. 2000 Fractal stream chemistry and its implications for contaminant transport in catchments. Nature 403 (6769), 524527.Google Scholar
Long, J. C. S., Remer, J. S., Wilson, C. R. & Witherspoon, P. A. 1982 Porous media equivalents for networks of discontinuous fractures. Water Resour. Res. 18 (3), 645658.CrossRefGoogle Scholar
McDonnell, J. J. 1990 A rationale for old water discharge through macropores in a steep, humid catchment. Water Resour. Res. 26 (11), 28212832.Google Scholar
Neal, C. & Rosier, P. T. W. 1990 Chemical studies of chloride and stable oxygen isotopes in two conifer afforested and moorland sites in the British uplands. J. Hydrol. 115 (1), 269283.CrossRefGoogle Scholar
Pauwels, V. & Troch, P. A. 2010 Estimation of aquifer lower layer hydraulic conductivity values through base flow hydrograph rising limb analysis. Water Resour. Res. 46 (3), W03501.Google Scholar
Polubarinova Kochina, P. Ya. 1962 Theory of Ground Water Movement. Princeton University Press.Google Scholar
Renard, P. & de Marsily, G. 1997 Calculating equivalent permeability: a review. Adv. Water Resour. 20 (5), 253278.Google Scholar
Sanford, W. E., Parlange, J. Y. & Steenhuis, T. S. 1993 Hillslope drainage with sudden drawdown: closed form solution and laboratory experiments. Water Resour. Res. 29 (7), 23132321.Google Scholar
Sloan, W. T. 2000 A physics-based function for modeling transient groundwater discharge at the watershed scale. Water Resour. Res. 36 (1), 225241.Google Scholar
Szilagyi, J. & Parlange, M. B. 1998 Baseflow separation based on analytical solutions of the Boussinesq equation. J. Hydrol. 204 (1), 251260.Google Scholar
Troch, P. A., Berne, A., Bogaart, P., Harman, C., Hilberts, A. G. J., Lyon, S. W., Paniconi, C., Pauwels, V. R. N., Rupp, D. E., Selker, J. S., Teuling, A. J., Uijlenhoet, R. & Verhoest, N. E. C. 2013 The importance of hydraulic groundwater theory in catchment hydrology: the legacy of Wilfried Brutsaert and Jean-Yves Parlange. Water Resour. Res. 49 (9), 50995116.Google Scholar
Troch, P. A., De Troch, F. P. & Brutsaert, W. 1993 Effective water table depth to describe initial conditions prior to storm rainfall in humid regions. Water Resour. Res. 29 (2), 427434.Google Scholar