Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-10T05:59:50.236Z Has data issue: false hasContentIssue false

Resonant sloshing in shallow water

Published online by Cambridge University Press:  21 April 2006

H. Ockendon
Affiliation:
Mathematical Institute, Oxford University, 24-29 St. Giles, Oxford OX1 3LB, UK
J. R. Ockendon
Affiliation:
Mathematical Institute, Oxford University, 24-29 St. Giles, Oxford OX1 3LB, UK
A. D. Johnson
Affiliation:
Mathematical Institute, Oxford University, 24-29 St. Giles, Oxford OX1 3LB, UK

Abstract

The ordinary differential equation \[ {\textstyle\frac{1}{3}}\kappa^2(g^{\prime\prime}+g) - \lambda g - {\textstyle\frac{3}{2}}g^2 + \frac{2}{\pi} \cos t = -\frac{3}{2}\int_{-\pi}^{\pi}g^2\,{\rm d}t, \] which represents forced water waves on shallow water near resonance, is considered when the dispersion κ is small. Asymptotic methods are used to show that there are multiple solutions with period 2π for a given value of the detuning parameter λ. The effects of dissipation are also considered.

Type
Research Article
Copyright
© 1986 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Chester, W. 1964 J. Fluid Mech. 18, 44.
Chester, W. 1968 Proc. R. Soc. Lond. A 306, 5.
Chester, W. & Bones, J. A. 1968 Proc. R. Soc. Lond. A 306, 23.
Cox, E. A. & Mortell, M. P. 1983, Z. angew. Math. Phys. 34, 1.
Cox, E. A. & Mortell, M. P. 1986 J. Fluid Mech. 162, 99.
Holmes, P. & Spence, D. A. 1984 Q. J. Mech. Appl. Maths 37, 525538.
Kath, W. L. 1985 Stud. Appl. Math. 72, 221.
Kuzmak, G. E. 1983, Appl. Math. Mech. 23, 730.
Luke, J. C. 1966 Proc. R. Soc. Lond. A 292, 403.
Miles, J. W. 1985 Wave Motion 7, 291297.
Moiseyev, N. N. 1958 Prikl. Mat. Mech. 22, 612.
Mortell, M. & Seymour, B. R. 1979 Proc. R. Soc. Lond. A 367, 253.
Ockendon, J. R. & Ockendon, H. 1973 J. Fluid Mech. 59, 397.
Vanden-Broeck, J.-M. 1984 J. Fluid Mech. 139, 97.