Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-13T00:51:36.018Z Has data issue: false hasContentIssue false

Resonant oscillations of inviscid charged drops

Published online by Cambridge University Press:  20 April 2006

John A. Tsamopoulos
Affiliation:
Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
Robert A. Brown
Affiliation:
Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

Abstract

Moderate-amplitude axisymmetric oscillations of charged inviscid drops held together by surface tension are calculated by a multiple-timescale expansion. The corrections to the drop shape and velocity caused by mode coupling at second order in amplitude are predicted for two-, three- and four-lobed motions of drops with net charge up to the Rayleigh limit Qc ≡ 4π½. Resonant oscillations between four- and six-lobed motions occur for total charge values near $Q_{\rm r}\equiv (\frac{32}{3}\pi)^{\frac{1}{2}}$ and are analysed. Both frequency and amplitude modulation of the oscillation are predicted for drop motions starting from general initial deformations.

Type
Research Article
Copyright
© 1984 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramowitz, M. & Stegun, I. A. 1964 Handbook of Mathematical Functions, chaps 16 and 17. National Bureau of Standards, Washington, D.C.
Adornato, P. M. & Brown, R. A. 1983 Shape and stability of electrostatically levitated drops. Proc. R. Soc. Lond. A 389, 101117.Google Scholar
Alonso, C. T. 1974 The dynamics of colliding and oscillating drops. In Proc. Intl Colloq. on Drops and Bubbles (ed. D. J. Collins, M. S. Plesset & M. M. Saffren). Jet Propulsion Laboratory.
Basaran, O. A., Amundson, K. R., Patzek, T. W., Benner, R. E. & Scriven, L. E. 1982 Deformation, oscillation and break-up of charged drops in electric field. Bull. Am. Phys. Soc. 27, 1168.Google Scholar
Benney, D. J. 1962 Non-linear gravity wave interactions. J. Fluid Mech. 14, 577584.Google Scholar
Brazier-Smith, P. R., Brook, M., Latham, J., Saunders, C. P. R. & Smith, M. H. 1971 The vibration of electrified water drops. Proc. R. Soc. Lond. A 322, 523534.Google Scholar
Bretherton, F. P. 1964 Resonant interactions between waves. The case of discrete oscillations. J. Fluid Mech. 20, 457479.Google Scholar
Bupara, S. S. 1965 Spontaneous movements of small round bodies in viscous fluids. Ph.D. thesis, University of Minnesota.
Cohen, S. & Swiatecki, W. J. 1962 The deformation energy of a charged drop. IV: Evidence for a discontinuity in the conventional family of saddle point shapes. Ann. of Phys. 19, 67164.Google Scholar
Cohen, S. & Swiatecki, W. J. 1963 The deformation energy of a charged drop. V: Results of electronic computer studies. Ann. of Phys. 22, 406437.Google Scholar
Davis, R. E. & Acrivos, A. 1967 The stability of oscillatory internal waves. J. Fluid Mech. 30, 723736.Google Scholar
Davis, E. I. & Ray, A. K. 1980 Single aerosol particle size and mass measurements using an electrodynamic balance. J. Colloid Interface Sci. 75, 566576.Google Scholar
Hasse, R. W. 1975 Inertia, friction and angular momentum of an oscillating viscous charged liquid drop under surface tension. Ann. of Phys. 93, 6887.Google Scholar
Hendricks, C. D. & Schneider, J. M. 1963 Stability of a conducting droplet under the influence of surface tension and electrostatic forces. Am. J. Phys. 31, 450453.Google Scholar
Jacobi, N., Croonquist, A. P., Elleman, D. D. & Wang, T. G. 1981 Acoustically induced oscillation and rotation of a large drop in space. In Proc. 2nd Intl Colloq. on Drops and Bubbles (ed. D. H. Le Croissette). Jet Propulsion Laboratory.
Joseph, D. D. 1973 Domain perturbations: the higher order theory of infinitesimal water waves. Arch. Rat. Mech. Anal. 51, 295303.Google Scholar
Lamb, H. 1932 Hydrodynamics, 6th edn. Cambridge University Press.
McGoldrick, L. F. 1965 Resonant interactions among capillary—gravity waves. J. Fluid Mech. 21, 305331.Google Scholar
McGoldrick, L. F. 1970a An experiment on second-order capillary—gravity resonant wave interactions. J. Fluid Mech. 40, 251271.Google Scholar
McGoldrick, L. F. 1970b On Wilton's ripples: a special case of resonant interactions. J. Fluid Mech. 42, 193200.Google Scholar
McGoldrick, L. F. 1972 On the rippling of small waves: a harmonic nonlinear nearly resonant interaction. J. Fluid Mech. 52, 725751.Google Scholar
McGoldrick, L. F., Phillips, O. M., Hung, N. E. & Hodgson, T. H. 1966 Measurements of third-order resonant wave interactions. J. Fluid Mech. 25, 437456.Google Scholar
Moeckel, G. P. 1975 Thermodynamics of an interface. Arch. Rat. Mech Anal. 57, 255280.Google Scholar
Nayfeh, A. H. 1971 Third-harmonic resonance in the interaction of capillary and gravity waves. J. Fluid Mech. 48, 385395.Google Scholar
Nix, J. R. 1972 Calculation of fission barriers for heavy and superheavy nuclei. Ann. Rev. Nucl. Sci. 22, 65120.Google Scholar
Pavelle, R., Rothstein, M. & Fitch, J. 1981 Computer algebra. Sci. Am. 245, 136152.Google Scholar
Phillips, O. M. 1981 Wave interactions—the evolution of an idea. J. Fluid Mech. 106, 215227.Google Scholar
Prosperetti, A. 1980 Free oscillations of drops and bubbles: the initial-value problem. J. Fluid Mech. 100, 333347.Google Scholar
Rayleigh, J. W. S. 1882 On the equilibrium of liquid conducting masses charged with electricity. Phil. Mag. 14, 184186.Google Scholar
Sample, S. B., Raghupathy, B. & Hendricks, C. D. 1970 Quiescent distortion and resonant oscillations of a liquid drop in an electric field. Intl J. Engng Sci. 8, 97109.Google Scholar
Saville, D. A. 1974 Electrohydrodynamic oscillation and stability of a charged drop. Phys. Fluids 17, 5460.Google Scholar
Stratton, J. A. 1941 Electrodynamic Theory. McGraw-Hill, New York.
Tang, H. H. K. & Wong, C. Y. 1974 Vibration of a viscous liquid sphere. J. Phys. A: Math. Nucl. Gen. 7, 10381050.Google Scholar
Trinh, E., Zwern, A. & Wang, T. G. 1982 An experimental study of small-amplitude drop oscillations in immiscible liquid systems. J. Fluid Mech. 115, 453474.Google Scholar
Tsamopoulos, J. A. 1984 Ph.D. thesis, Massachusetts Institute of Technology.
Tsamopoulos, J. A. & Brown, R. A. 1983 Nonlinear oscillations of inviscid drops and bubbles. J. Fluid Mech. 127, 519537.Google Scholar
Tsang, C. F. 1974 Similarities and differences between volume-charged (nuclear) drops and charged conducting (rain) drops. In Proc. Intl Colloq. on Drops and Bubbles (ed. D. J. Collins, M. S. Plesset & M. M. Saffren). Jet Propulsion Laboratory.
Williams, A. 1973 Combustion of droplets of fluid fuels: A review. Combust. Flame 21, 131.Google Scholar
Wilton, J. R. 1915 On ripples. Phil. Mag. 29, 688700.Google Scholar