Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-07T19:17:53.366Z Has data issue: false hasContentIssue false

Resonant oscillations in shallow water with small mean-square disturbances

Published online by Cambridge University Press:  21 April 2006

J. G. B. Byatt-Smith
Affiliation:
Department of Mathematics, University of Edinburgh, James Clerk Maxwell Building, Mayfield Road, Edinburgh EH9 3JZ, UK

Abstract

The ordinary differential equation $\epsilon^2 \ddot{y} + \epsilon^2 \delta \dot{y} = y^2 - \cos t - 1 - c$ which represents forced water waves on shallow water near resonance is considered when the dispersion ε and the constant c are small. Asymptotic and numerical methods are used to show that solutions which are bounded for all finite t can exist only if $c > - 2^{-\frac{2}{3}}\epsilon^{\frac{4}{3}}\times 1.4664 \ldots $.

Type
Research Article
Copyright
© 1988 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Byatt-Smith, J. G. B. 1988 Stud. Appl. Maths (in press).
Chester, W. 1968 Proc. R. Soc. Lond. A 306, 522
Cox, E. A. & Mortell, M. P. 1983 Z. Angew. Math. Phys. 34, 845866.
Gambaudo, J. M. 1985 J. Diff. Equat. 57, 172199.
Hale, J. K. & Rodriques, M. 1977a Proc. R. Soc. Edin. A 78, 5765
Hale, J. K. & Rodriques, M. 1977b Proc. R. Soc. Edin. A 79, 317326
Holmes, P. J. 1982 Q. Appl. Maths 40, 5362.
Holmes, P. J. & Rand, D. A. 1976 J. Sound Vib. 14, 237253.
Kusmak, G. E. 1959 Prikl Math. Mekh 23, 514526.
Miles, J. 1985 Wave Motion 7, 291297.
Ockendon, J. R. & Ockendon, H. 1973 J. Fluid Mech. 59, 397413.
Ockendon, H., Ockendon, J. R. & Johnson, A. D. 1986 J. Fluid Mech. 167, 465479.