Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-08T07:17:15.213Z Has data issue: false hasContentIssue false

Resistance and mobility functions for the near-contact motion of permeable particles

Published online by Cambridge University Press:  17 March 2022

Rodrigo B. Reboucas
Affiliation:
Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06520-8286, USA
Michael Loewenberg*
Affiliation:
Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06520-8286, USA
*
Email address for correspondence: [email protected]

Abstract

A lubrication analysis is presented for the resistances between permeable spherical particles in near contact, $h_0/a\ll 1$, where $h_0$ is the minimum separation between the particles, and $a=a_1 a_2/(a_1+a_2)$ is the reduced radius. Darcy's law is used to describe the flow inside the permeable particles and no-slip boundary conditions are applied at the particle surfaces. The weak permeability regime $K=k/a^{2} \ll 1$ is considered, where $k=\frac {1}{2}(k_1+k_2)$ is the mean permeability. Particle permeability enters the lubrication resistances through two functions of $q=K^{-2/5}h_0/a$, one describing axisymmetric motions, the other transverse. These functions are obtained by solving an integral equation for the pressure in the near-contact region. The set of resistance functions thus obtained provide the complete set of near-contact resistance functions for permeable spheres and match asymptotically to the standard hard-sphere resistances that describe pairwise hydrodynamic interactions away from the near-contact region. The results show that permeability removes the contact singularity for non-shearing particle motions, allowing rolling without slip and finite separation velocities between touching particles. Axisymmetric and transverse mobility functions are presented that describe relative particle motion under the action of prescribed forces and in linear flows. At contact, the axisymmetric mobility under the action of oppositely directed forces is $U/U_0=d_0K^{2/5}$, where $U$ is the relative velocity, $U_0$ is the velocity in the absence of hydrodynamic interactions and $d_0=1.332$. Under the action of a constant tangential force, a particle in contact with a permeable half-space rolls without slipping with velocity $U/U_0=d_1(d_2+\log K^{-1})^{-1}$, where $d_1=3.125$ and $d_2=6.666$; in shear flow, the same expression holds with $d_1=7.280$.

Type
JFM Papers
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Auriault, J.L. 2009 On the domain of validity of Brinkman's equation. Transp. Porous Media 79, 215223.10.1007/s11242-008-9308-7CrossRefGoogle Scholar
Bäbler, M.U., Sefcik, J., Morbidelli, M. & Baldyga, J. 2006 Hydrodynamic interactions and orthokinetic collisions of porous aggregates in the Stokes regime. Phys. Fluids 18, 013302.10.1063/1.2166125CrossRefGoogle Scholar
Bars, M.L. & Woster, M.G. 2006 Interfacial conditions between a pure fluid and a porous medium: implications for binary alloy solidification. J. Fluid Mech. 550, 149173.10.1017/S0022112005007998CrossRefGoogle Scholar
Batchelor, G.K. 1982 Sedimentation in a dilute polydisperse system of interacting spheres. Part 1. General theory. J. Fluid Mech. 119, 379408.10.1017/S0022112082001402CrossRefGoogle Scholar
Batchelor, G.K. & Green, J.T. 1972 The hydrodynamic interaction of two small freely-moving spheres in a linear flow field. J. Fluid Mech. 56 (2), 375400.10.1017/S0022112072002927CrossRefGoogle Scholar
Batchelor, G.K. & O'Brien, R.W. 1977 Thermal or electrical conduction through a granular material. Proc. R. Soc. Lond. A 355 (1682), 313333.Google Scholar
Beavers, G.S. & Joseph, D.D. 1967 Boundary conditions at a naturally permeable wall. J. Fluid Mech. 30, 197207.10.1017/S0022112067001375CrossRefGoogle Scholar
Belfort, G., Davis, R.H. & Zydney, A.L. 1994 The behavior of suspensions and macromolecular solutions in crossflow microfiltration. J. Memb. Sci. 96, 158.10.1016/0376-7388(94)00119-7CrossRefGoogle Scholar
Blue, L.E. & Jorgenson, J.W. 2015 1.1 $\mathrm {\mu }$m superficially porous particles for liquid chromatography. Part II. Column packing and chromatographic performance. J. Chromatogr. A 1380, 7180.10.1016/j.chroma.2014.12.055CrossRefGoogle Scholar
Brenner, H. 1961 The slow motion of a sphere through a viscous fluid towards a plane surface. Chem. Engng Sci. 16 (3-4), 242251.10.1016/0009-2509(61)80035-3CrossRefGoogle Scholar
Brenner, H. & O'Neill, M.E. 1972 On the Stokes resistance of multiparticle systems in a linear shear field. Chem. Engng Sci. 27 (7), 14211439.10.1016/0009-2509(72)85029-2CrossRefGoogle Scholar
Brinkman, H.C. 1949 A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Appl. Sci. Res. A 1, 2734.10.1007/BF02120313CrossRefGoogle Scholar
Burganos, V.N., Michalopoulou, A.C., Dassios, G. & Payatakes, A.C. 1992 Creeping flow around and through a permeable sphere moving with constant velocity towards a solid wall: a revision. Chem. Engng Commun. 117, 8588.CrossRefGoogle Scholar
Cao, Y., Gunzburger, M., Hua, F. & Wang, X. 2010 Coupled Stokes-Darcy model with Beavers-Joseph interface boundary condition. Commun. Math. Sci. 8, 125.10.4310/CMS.2010.v8.n1.a2CrossRefGoogle Scholar
Chen, S.B. 1998 Axisymmetric motion of multiple composite spheres: solid core with permeable shell, under creeping flow conditions. Phys. Fluids 10, 1150.10.1063/1.869676CrossRefGoogle Scholar
Chen, S.B. & Cai, A. 1999 Hydrodynamic interactions and mean settling velocity of porous particles in a dilute suspension. J. Colloid Interface Sci. 217, 328340.10.1006/jcis.1999.6353CrossRefGoogle Scholar
Childress, S. 1972 Viscous flow past a random array of spheres. J. Chem. Phys. 56 (6), 25272539.10.1063/1.1677576CrossRefGoogle Scholar
Civan, F. 2007 Reservoir Formation Damage, 2nd edn, chap. 18. Elsevier.CrossRefGoogle Scholar
Cooley, M.B.A. & O'Neill, M.E. 1968 On the slow rotation of a sphere about a diameter parallel to a nearby plane wall. IMA J. Appl. Maths 4 (2), 163173.10.1093/imamat/4.2.163CrossRefGoogle Scholar
Cooley, M.B.A. & O'Neill, M.E. 1969 a On the slow motion of two spheres in contact along their line of centres through a viscous fluid. Math. Proc. Camb. Phil. Soc. 66 (2), 407415.10.1017/S0305004100045138CrossRefGoogle Scholar
Cooley, M.D.A. & O'Neill, M.E. 1969 b On the slow motion generated in a viscous fluid by the approach of a sphere to a plane wall or stationary sphere. Mathematika 16 (1), 3749.10.1112/S0025579300004599CrossRefGoogle Scholar
Corless, R.M. & Jeffrey, D.J. 1988 a Forces and stresslets for the axisymmetric motion of nearly touching unequal spheres. Physico-Chem. Hydrodyn. 10, 461470.Google Scholar
Corless, R.M. & Jeffrey, D.J. 1988 b Stress moments of nearly touching spheres in low Reynolds number flow. Z. Angew. Math. Phys. 39, 874884.CrossRefGoogle Scholar
Damiano, E.R., Long, D.S., El-Khatib, F.H. & Stace, T.M. 2004 On the motion of a sphere in a stokes flow parallel to a brinkman half-space. J. Fluid Mech. 500, 75101.CrossRefGoogle Scholar
Darcy, H. 1856 Les Fontaines Publiques de la Ville de Dijon. Dalmont.Google Scholar
Davis, A.M.J. 2001 Axisymmetric flow due to a porous sphere sedimenting towards a solid sphere or a solid wall: application to scavanging of small particles. Phys. Fluids 13, 3126.CrossRefGoogle Scholar
Davis, R.H. & Stone, H.A. 1993 Flow through beds of porous particles. Chem. Engng Sci. 48 (23), 39934005.10.1016/0009-2509(93)80378-4CrossRefGoogle Scholar
Davis, R.H., Schonberg, J.A. & Rallison, J.M. 1989 The lubrication force between two viscous drops. Phys. Fluids A 1 (1), 7781.10.1063/1.857525CrossRefGoogle Scholar
Debbech, A., Elasmi, L. & Feuillebois, F. 2010 The method of fundamental solution for the creeping flow around a sphere close to a membrane. Z. Angew. Math. Mech. 90 (12), 920928.10.1002/zamm.200900394CrossRefGoogle Scholar
Durlofsky, L. & Brady, J.F. 1987 Analysis of the Brinkman equation as a model for flow in porous media. Phys. Fluids 30 (11), 33293341.10.1063/1.866465CrossRefGoogle Scholar
Goldman, A.J., Cox, R.G. & Brenner, H. 1967 a Slow viscous motion of a sphere parallel to a plane wall–I. Motion through a quiescent fluid. Chem. Engng Sci. 22 (4), 637651.10.1016/0009-2509(67)80047-2CrossRefGoogle Scholar
Goldman, A.J., Cox, R.G. & Brenner, H. 1967 b Slow viscous motion of a sphere parallel to a plane wall–II. Couette flow. Chem. Engng Sci. 22 (4), 653660.10.1016/0009-2509(67)80048-4CrossRefGoogle Scholar
Goren, S.L. 1979 The hydrodynamic force resisting the approach of a sphere to a plane permeable wall. J. Colloid Interface Sci. 69, 7885.10.1016/0021-9797(79)90082-1CrossRefGoogle Scholar
Happel, J. & Brenner, H. 1983 Low Reynolds Number Hydrodynamics. Springer.Google Scholar
Hertz, H. 1882 Ueber die berührung fester elastischer körper. [On the fixed elastic body contact]. J. Reine Angew. Math. 92, 156171.10.1515/crll.1882.92.156CrossRefGoogle Scholar
Howells, I.D. 1974 Drag due to the motion of a Newtonian fluid through a sparse random array of small fixed rigid objects. J. Fluid Mech. 64 (3), 449476.10.1017/S0022112074002503CrossRefGoogle Scholar
Hwang, K.J. & Sz, P.Y. 2011 Membrane fouling mechanism and concentration effect in cross-flow microfiltration of BSA/dextran mixtures. Chem. Engng J. 166, 669677.CrossRefGoogle Scholar
Ingber, M.S. & Zinchenko, A. 2012 Semi-analytic solution of the motion of two spheres in arbitrary shear flow. Intl J. Multiphase Flow 42, 152163.10.1016/j.ijmultiphaseflow.2012.01.005CrossRefGoogle Scholar
Jeffrey, D.J. 1982 Low-Reynolds-number flow between converging spheres. Mathematika 29 (1), 5866.10.1112/S002557930001216XCrossRefGoogle Scholar
Jeffrey, D.J. 1989 Higher–order corrections to the axisymmetric interactions of nearly touching spheres. Phys. Fluids A 1 (10), 17401742.CrossRefGoogle Scholar
Jeffrey, D.J. 1992 The calculation of the low Reynolds number resistance functions for two unequal spheres. Phys. Fluids A 4 (1), 1629.CrossRefGoogle Scholar
Jeffrey, D.J. & Onishi, Y. 1984 a The forces and couples acting on two nearly touching spheres in low-Reynolds-number flow. Z. Angew. Math. Phys. 35, 634641.10.1007/BF00952109CrossRefGoogle Scholar
Jeffrey, D.J. & Onishi, Y. 1984 b Calculation of the resistance and mobility functions for two unequal rigid spheres in low-Reynolds-number flow. J. Fluid Mech. 139, 261290.CrossRefGoogle Scholar
Jones, R.B. 1978 Hydrodynamic interactions of two permeable spheres I: the method of reflections. Physica A 92, 545556.10.1016/0378-4371(78)90150-4CrossRefGoogle Scholar
Khabthani, S., Sellier, A. & Feuillebois, F. 2019 Lubricating motion of a sphere towards a thin porous slab with Saffman slip condition. J. Fluid Mech. 867, 949968.10.1017/jfm.2019.169CrossRefGoogle Scholar
Kim, S. & Karrila, S.J. 2005 Microhydrodynamics: Principles and Selected Applications. Dover.Google Scholar
Kim, S. & Mifflin, R.T. 1985 The resistance and mobility functions of two equal spheres in low-Reynolds-number flow. Phys. Fluids 28 (7), 20332045.CrossRefGoogle Scholar
Le-Clech, P., Chen, V. & Fane, T.A.G. 2006 Fouling in membrane bioreactors used in wastewater treatment. J. Memb. Sci. 284, 1753.10.1016/j.memsci.2006.08.019CrossRefGoogle Scholar
Lévy, T. 1983 Fluid flow through an array of fixed particles. Intl J. Engng Sci. 21 (1), 1123.10.1016/0020-7225(83)90035-6CrossRefGoogle Scholar
Liapis, A.I. & McCoy, M.A. 1994 Perfusion chromatography: effect of micropore diffusion on column performance in systems utilizing perfusive adsorbent particles with a bidisperse porous structure. J. Chromatogr. A 660 (1), 8596.10.1016/0021-9673(94)85102-6CrossRefGoogle Scholar
Lin, C.J., Lee, K.J. & Sather, N.F. 1970 Slow motion of two spheres in a shear field. J. Fluid Mech. 43 (1), 3547.10.1017/S0022112070002227CrossRefGoogle Scholar
Maude, A.D. 1963 The movement of a sphere in front of a plane at low Reynolds number. Brit. J. Appl. Phys. 14 (12), 894.10.1088/0508-3443/14/12/316CrossRefGoogle Scholar
Michalopoulou, A.C., Burganos, V.N. & Payatakes, A.C. 1992 Creeping axisymmetric flow around a solid particle near a permeable obstacle. AIChE J. 38, 12131228.10.1002/aic.690380809CrossRefGoogle Scholar
Michalopoulou, A.C., Burganos, V.N. & Payatakes, A.C. 1993 Hydrodynamic interactions of two permeable particles moving slowly along their centerline. Chem. Engng Sci. 48, 28892900.10.1016/0009-2509(93)80035-OCrossRefGoogle Scholar
Neale, G. & Nader, W. 1974 Practical significance of Brinkman's extension of Darcy's law: coupled parallel flows within a channel and a bounding porous medium. Can. J. Chem. Engng 52, 475478.10.1002/cjce.5450520407CrossRefGoogle Scholar
Nir, A. 1981 On the departure of a sphere from contact with a permeable membrane. J. Engng Maths 15, 6575.10.1007/BF00039844CrossRefGoogle Scholar
Nir, A. & Acrivos, A. 1973 On the creeping motion of two arbitrary-sized touching spheres in a linear shear field. J. Fluid Mech. 59 (2), 209223.CrossRefGoogle Scholar
Ochoa-Tapia, J.A. & Whitaker, S. 1995 Momentum transfer at the boundary between a porous medium and a homogeneous fluid. I. Theoretical development. Intl J. Heat Mass Transfer 38, 26352646.10.1016/0017-9310(94)00346-WCrossRefGoogle Scholar
O'Neill, M.E. & Majumdar, R. 1970 a Asymmetrical slow viscous fluid motions caused by the translation or rotation of two spheres. Part 1. The determination of exact solutions for any values of the ratio of radii and separation parameters. Z. Angew. Math. Phys. 21, 164179.10.1007/BF01590641CrossRefGoogle Scholar
O'Neill, M.E. & Majumdar, R. 1970 b Asymmetrical slow viscous fluid motions caused by the translation or rotation of two spheres. Part 2. Asymptotic forms of the solutions when the minimum clearance between the spheres approaches zero. Z. Angew. Math. Phys. 21, 180187.10.1007/BF01590642CrossRefGoogle Scholar
O'Neill, M.E. & Stewartson, K. 1967 On the slow motion of a sphere parallel to a nearby plane wall. J. Fluid Mech. 27 (4), 705724.10.1017/S0022112067002551CrossRefGoogle Scholar
Payatakes, A.C. & Dassios, G. 1987 Creeping flow around and through a permeable sphere moving with constant velocity towards a solid wall. Chem. Engng Commun. 58, 119138.10.1080/00986448708911963CrossRefGoogle Scholar
Ramon, G.Z. & Hoek, E.M.V. 2012 On the enhanced drag force induced by permeation through a filtration membrane. J. Memb. Sci. 392–393, 18.10.1016/j.memsci.2011.10.056CrossRefGoogle Scholar
Ramon, G.Z., Huppert, H.E., Lister, J.R. & Stone, H.A. 2013 On the hydrodynamic interaction between a particle and a permeable surface. Phys. Fluids 25, 073103.10.1063/1.4812832CrossRefGoogle Scholar
Reboucas, R.B. & Loewenberg, M. 2021 a Near-contact approach of two permeable spheres. J. Fluid Mech. 925, A1.10.1017/jfm.2021.588CrossRefGoogle Scholar
Reboucas, R.B. & Loewenberg, M. 2021 b Collision rates of permeable particles in creeping flows. Phys. Fluids 33, 083322.10.1063/5.0060018CrossRefGoogle Scholar
Rodrigues, A.E., Ahn, B.J. & Zoulalian, A. 1982 Intraparticle-forced convection effect in catalyst diffusivity measurements and reactor design. AIChE J. 28 (4), 541546.10.1002/aic.690280404CrossRefGoogle Scholar
Roy, B.C. & Damiano, E.R. 2008 On the motion of a porous sphere in a stokes flow parallel to a planar confining boundary. J. Fluid Mech. 606, 75104.10.1017/S0022112008001572CrossRefGoogle Scholar
Saffman, P.G. 1971 On the boundary condition at the surface of a porous medium. Stud. Appl. Maths 50, 93101.10.1002/sapm197150293CrossRefGoogle Scholar
Stimson, M. & Jeffery, G.B. 1926 The motion of two spheres in a viscous fluid. Proc. R. Soc. Lond. A 111 (757), 110116.Google Scholar
Tam, C.K.W. 1969 The drag on a cloud of spherical particles in low Reynolds number flow. J. Fluid Mech. 38 (3), 537546.10.1017/S0022112069000322CrossRefGoogle Scholar
Wang, J., Cahyadi, A., Wu, B., Pee, W., Fane, A.G. & Chew, J.W. 2020 The roles of particles in enhancing membrane filtration: a review. J. Memb. Sci. 595, 117570.10.1016/j.memsci.2019.117570CrossRefGoogle Scholar
Supplementary material: File

Reboucas and Loewenberg supplementary material

Reboucas and Loewenberg supplementary material

Download Reboucas and Loewenberg supplementary material(File)
File 2.2 KB