No CrossRef data available.
Published online by Cambridge University Press: 29 April 2025
In marine and offshore engineering, the presence of air in the water plays a significant role in influencing impact pressures during water entry events. Owing to limited research on the impact loads of aerated water entry, this study aims to explore the effect of aeration on water entry impact pressures. A comprehensive experimental investigation on pure and aerated water entry of a wedge with a 20° deadrise angle was presented. The wire-mesh sensor (WMS) technology was proposed to accurately quantify the spatial and temporal distributions of void fractions in multiphase environments. The WMS provides reliable and consistent measurements at varying void fractions, as validated against image-based methods. The results indicated that the aeration reduced peak impact pressures by up to 33 %, and extended pressure duration, with a linear relationship between impact pressure and void fraction. Furthermore, the probability distribution of peak pressures conformed well to both the generalised extreme value and Weibull distributions, with the void fraction exerting a strong influence on pressure distribution parameters. These findings suggest that controlled aeration can effectively mitigate impact loads, offering practical implications for marine structure design.