Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-09T06:48:58.721Z Has data issue: false hasContentIssue false

Report on the IUTAM symposium: fundamental aspects of vortex motion

Published online by Cambridge University Press:  21 April 2006

H. Aref
Affiliation:
Institute of Geophysics and Planetary Physics and Department of Applied Mechanics and Engineering Science, University of California, San Diego, La Jolla, CA 92093, USA
T. Kambe
Affiliation:
Department of Physics, University of Tokyo, Bunkyo-ku, Tokyo 113, Japan

Abstract

The IUTAM Symposium Fundamental Aspects of Vortex Motion was held in Tokyo, Japan, from 31 August to 4 September 1987. We present an account of the technical sessions of that meeting. The main goals of this report are (i) to provide a widely accessible record of the four-and-one-half day meeting; (ii) to identify important new developments in the field of vortex dynamics of potential interest to a larger audience than the invited attendees; and (iii) to attempt some overview comments with the wisdom of hindsight that may be useful as a guide to specific papers in the proceedings and other current literature.

Type
Research Article
Copyright
© 1988 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abernathy, F. H. & Kronauer, R. E. 1962 The formation of vortex streets. J. Fluid Mech. 13, 120.Google Scholar
Aref, H. 1983 Integrable, chaotic, and turbulent vortex motion in two-dimensional flows. Ann. Rev. Fluid Mech. 15, 345389.Google Scholar
Aref, H. 1984 Stirring by chaotic advection. J. Fluid Mech. 143, 121.Google Scholar
Aref, H., Kadtke, J. B., Zawadzki, I., Campbell, L. J. & Eckhardt B. Point vortex dynamics: recent results and open problems.
Auerbach, D. Some open questions on the flow of vortex rings.
Bayly, B. J. 1986 Three-dimensional instability of elliptical flow. Phys. Rev. Lett. 57, 21602163.Google Scholar
Bearman, P. W. & Takamoto, M. Vortex shedding behind rings and disks.
Bridges, J. E. & Hussain, A. K. M. F. 1987 Roles of initial conditions and vortex pairing in jet noise. J. Sound Vib. 117, 2892312.Google Scholar
Caflisch, R. Nonlinear analysis for the evolution of vortex sheets.
Campbell, L. J. & Kadtke, J. B. 1987 Stationary configurations of point vortices and other logarithmic objects in two dimensions. Phys. Rev. Lett. 58, 670673.Google Scholar
Capéran, P., Maxworthy, T., Verron, J. & Hopfinger, E. J. 1988 Interaction de tourbillons bidimensionelle de méme signe: étude éxperimentale et numerique. Proc. Colloq. Dynamique des fluides Géophysique et Astrophysique. Grenble, France (in press)
Capéran, P. & Verron, J. Numerical simulation of a physical experiment on two-dimensional vortex merging.
Chalmers, J., Hodson, S., Winkler, K.-H. A., Woodward, P. L. & Zabusky, N. J. Shock-bubble interactions: generation and evolution of vorticity in two-dimensional supersonic flows.
Chollet, J. P., Lesieur, M. & Comte, P. Numerical simulations of vortices in mixing layers and plane jets.
Christiansen, J. P. 1973 Numerical hydrodynamics by the method of point vortices. J. Comput. Phys. 13, 363379.Google Scholar
Christiansen, J. P. & Zabusky, N. J. 1973 Instability, coalescence and fission of finite-area vortex structures. J. Fluid Mech. 61, 219243.Google Scholar
Ciéslinski, J., Gragert, P. K. H. & Sym, A. 1986 Exact solution to localized-induction-approximation equation modelling smoke ring motion. Phys. Rev. Lett. 57, 15071510.Google Scholar
Dallmann, U. Three-dimensional vortex structures and vorticity topology.
Da Rios, L. S. 1906 Sul moto d'un liquido indefinite con un filetto vorticoso di forma qualunque. Rend. Circ. Mat. Palermo 22, 117135.Google Scholar
Deem, G. S. & Zabusky, N. J. 1978 Vortex waves: Stationary ‘V states,’ interactions, recurrence, and breaking. Phys. Rev. Lett. 40, 859862.Google Scholar
Dritschel, D. G. The repeated filamentation of vorticity interfaces.
Dritschel, D. G. 1988a Nonlinear stability bounds for inviscid, two-dimensional, parallel or circular flows with monotonic vorticity, and the analogous three-dimensional, quasigeostrophic flows. J. Fluid Mech. 191, 575581.Google Scholar
Dritschel, D. G. 1988b Contour surgery: a topological reconnection scheme for extended integrations using contour dynamics. J. Comput. Phys. (in press).Google Scholar
Eckhardt, B. & Aref, H. 1988 Integrable and chaotic motions of four vortices II. Collision dynamics of vortex pairs. Phil. Trans. R. Soc. Lond. A (in press).Google Scholar
Faltinsen, O. M. & Braathen, A. Interaction between shed vorticity, free surface waves and forced roll motion of a two-dimensional floating body.
Farge, M. Vortex motion in a rotating stratified fluid layer.
Frisch, U., Scholl, H., She, Z. S. & Sulem, P. L. A new large-scale instability in 3D anisotropic, incompressible flows lacking parity invariance.
Fukumoto, Y. & Miyazaki, T. Three-dimensional distortions of a vortex filament: exact solution of the localized induction equation.
Gibson, C. H. Isoénstrophy points and surfaces in turbulent flow and mixing.
Giga, Y. & Kambe, T. Large time behaviour of the vorticity of 2D viscous flow and vortex formation in 3D flow.
Graham, J. M. R. & Cozens, P. D. Vortex shedding from edges including viscous effects.
Griffiths, R. W. & Hopfinger, E. J. 1987 Coalescing of geostrophic vortices. J. Fluid Mech. 178, 7397.Google Scholar
Haas, J. F. & Sturtbvant, B. (1987) Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities. J. Fluid Mech. 181, 4176.Google Scholar
Hama, F. R. Genesis of the LIA.
Hasimoto, H. 1972 A soliton on a vortex filament. J. Fluid Mech. 51, 477485.Google Scholar
Hasimoto, H. Elementary aspects of vortex motion.
Hasimoto, H., Ishii, K., Kimura, Y. & Sakiyama, M. 1984 Chaotic and coherent behaviour of vortex filaments in bounded domains. In Turbulence and Chaotic Phenomena in Fluids (ed., T. Tatsumi), pp. 231237. North-Holland.
Honji, H. Vortex motions in stratified wakes.
Hopfinger, E. J. & Browand, F. K. 1982 Vortex solitary waves in a rotating, turbulent flow. Nature 295, 393395.Google Scholar
Hornung, H. & Elsenaar, A. Detailed measurements in the transonic vortical flow over a delta wing.
Ishii, K., Liu, C. H. & Kuwahara, K. Motion and decay of vortices.
Jimenez, J. 1987 On the linear stability of the inviscid Kármán vortex street. J. Fluid Mech. 178, 177194.Google Scholar
Kambe, T. & Minota, T. 1983 Acoustic wave radiated by head-on collision of two vortex rings. Proc. R. Soc. Lond. A 386, 277308.Google Scholar
Kambe, T. & Takao, T. 1971 Motion of distorted vortex rings. J. Phys. Soc. Japan 31, 591599.Google Scholar
Kawahashi, M., Brocher, E. & Collini, P. Coupling of vortex shedding with a cavity.
Keller, J. J., Egll, W. & Althaus, R. Vortex breakdown as a fundamental element of vortex dynamics.
Kida, S. 1981 A vortex filament moving without change of form. J. Fluid Mech. 112, 397409.Google Scholar
Kida, S. & Takaoka, M. Reconnection of vortex tubes.
Kimura, R. Cell formation by buoyant plumes produced by Rayleigh–Taylor instability.
Kimura, Y. Chaos and collapse of a system of point vortices.
Kit, E., Tsinober, A., Teitel, M., Balint, J. L., Wallace, J. M. & Levich, E. Vorticity measurements in turbulent grid flows.
Kiya, M. & Ishii, H. Vortex dynamics simulation of interacting vortex rings and filaments.
Krasny, R. Numerical simulation of vortex sheet evolution.
Krasny, R. 1987 Computation of vortex sheet roll-up in the Trefftz plane. J. Fluid Mech. 184, 123155.Google Scholar
Krause, E. Numerical prediction of vortex breakdown.
Küchemann, D. 1965 Report on the I.U.T.A.M. symposium on concentrated vortex motions in fluids. J. Fluid Mech. 21, 120.Google Scholar
Kuwabara, S. Pseudo-canonical formulation of three-dimensional vortex motion and vorton model analysis.
Leibovich, S., Brown, S. N. & Patel, Y. 1986 Bending waves on inviscid columnar vortices. J. Fluid Mech. 173, 595624.Google Scholar
Lighthill, M. J. 1952 On sound generated aerodynamically: I General theory. Proc. R. Soc. Lond. A 211, 564587.Google Scholar
Mathias, M., Stokes, A. N., Hourigan, K. & Welsh, M. C. Low-level flow induced acoustic resonances in ducts.
Maxworthy, T. Waves on vortex cores.
Maxworthy, T., Hopfinger, E. J. & Redekopp, L. G. 1985 Wave motions on vortex cores. J. Fluid Mech. 151, 141165.Google Scholar
Mehta, R. D. 1985 Aerodynamics of sports balls. Ann. Rev. Fluid Mech. 17, 151189.Google Scholar
Meiburg, E., Lasheras, J. C. & Ashurst, W. T. Topology of the vorticity field in three-dimensional shear layers and wakes.
Meier, G. E. A., Lent, H.-M. & Löhr, K. F. Sound generation and flow interaction of vortices with an airfoil and a flat plate in transonic flow.
Meiron, D. J., Baker, G. R. & Orszag, S. A. 1982 Analytic structure of vortex sheet dynamics. I. Kelvin-Helmholtz instability. J. Fluid Mech. 114, 283298.Google Scholar
Melander, M. V. & Zabusky, N. J. Interaction and reconnection of vortex tubes via direct numerical simulations.
Minota, T., Kambe, T. & Murakami, T. Acoustic emission from interaction of a vortex ring with a sphere.
Mochuki, O., Kiya, M. & Tazumi, M. Vortex-body interaction in a jet–circular cylinder sound generation system.
Modi, V. J., Mokhtarian, F., Yokomizu, T., Ohta, G. & Oinuma, T. Bound vortex boundary layer control with application to V/STOL airplanes.
Moffatt, H. K. 1969 The degree of knottedness of tangled vortex lines. J. Fluid Mech. 35, 117129.Google Scholar
Moffatt, H. K. 1986 On the existence of localized rotational disturbances which propagate without change of structure in an inviscid fluid. J. Fluid Mech. 173, 289302.Google Scholar
Moffatt, H. K. Generalized vortex rings with and without swirl.
Monin, A. S. & Yaglom, A. M. 1975 Statistical Fluid Mechanics: Mechanics of Turbulence, Vol. 2 (ed. J. L. Lumley). The MIT Press, 874 pp.
Moore, D. W. 1979 The spontaneous appearance of a singularity in the shape of an evolving vortex sheet. Proc. R. Soc. Lond. A 365, 105119.Google Scholar
Moore, D. W. 1984 Numerical and analytical aspects of Helmholtz instability. In Theoretical and Applied Mechanics, Proc. XVI Intern. Congr. Theor. Appl. Mech. (ed. F. I. Niordson & N. Olhoff), pp. 629633. North-Holland.
Moore, D. W. & Saffman, P. G. 1972 The motion of a vortex filament with axial flow. Phil. Trans. R. Soc. Lond. A 272, 403429.Google Scholar
Moore, D. W. & Saffman, P. G. 1975 The density of organized vortices in a turbulent mixing layer. J. Fluid Mech. 69, 465473.Google Scholar
Mory, M. Coherent vortices in a turbulent and rotating fluid.
Müller, E.-A. & Obermeier, F. Vortex sound.
Nakano, T. Vorticity field in a cascade model of turbulence.
Nastase, A. Some considerations on edge vortices on wings in supersonic flow.
Niino, H. Inertial instability of the Stewartson E1/4 layer.
Noto, K., Honda, M. & Matsumoto, R. Coherent motion of turbulent thermal plume in stably stratified fluid.
Novikov, E. A. Breakdown and reconnection of vortex filaments.
Ohji, M. Structure of modulated wavy vortical flows in the circular Couette system.
Okude, M. & Matsui, T. Process of formation of vortex street in the wake behind a flat plate.
Oshima, Y., Izutsu, N., Oshima, K. & Hussain A. K. M. F. Bifurcation of an elliptic vortex ring.
Oshima, Y. & Asaka, S. 1977 Interaction of multi-vortex rings. J. Phys. Soc. Japan 42, 13911395.Google Scholar
Pasmanter, R. A. Anomalous diffusion and anomalous stretching in vortical flows.
Pierrehumbert, R. T. 1986 Universal short-wave instability of two-dimensional eddies in an inviscid fluid. Phys. Rev. Lett. 57, 21572159.Google Scholar
Pocklington, H. C. 1985 The configuration of a pair of equal and opposite hollow straight vortices, of finite cross-section, moving steadily through fluid. Proc. Camb. Phil. Soc. 8, 178187.Google Scholar
Polvani, L. M., Zabusky, N. J. & Flierl, G. R. Applications of contour dynamics to two-layer quasi-geostrophic flows.
Pozrikidis, C. 1986 The nonlinear instability of Hill's vortex. J. Fluid Mech. 168, 337367.Google Scholar
Pullin, D. I. & Moore, D. W. The vortex pair in a compressible ideal gas.
Pumir, A. & Siggia, E. D. 1987 Vortex dynamics and the existence of solutions to the Navier-Stokes equations. Phys. Fluids 30, 16061626.Google Scholar
Saffman, P. G. The stability of vortex arrays to two-and three-dimensional disturbances.
Saffman, P. G. & Meiron, D. I. 1986 Difficulties with three-dimensional weak solutions for inviscid incompressible flow. Phys. Fluids 29, 23732375.Google Scholar
Schmücker, A. & Gersten, K. Vortex breakdown and its control on delta wings.
Schwarz, K. 1982 Generation of superfluid turbulence deduced from simple dynamical rules. Phys. Rev. Lett. 49, 283285.Google Scholar
Schwarz, K. 1985 Three-dimensional vortex dynamics in superfluid in superfluid 4He: Line-line and line-boundary interactions. Phys. Rev. B 31, 57825804.Google Scholar
Shariff, K., Leonard, A., Zabusky, N. J. & Ferziger, J. H. Acoustics and dynamics of coaxial, interacting vortex rings.
Shingubara, S., Hagiwara, K., Fukushima, R. & Kawakubo, T. Transition from one-celled to two-celled vortex.
Shirayama, S., Kuwahara, K. & Tamura, T. Simulation of vortex interaction behind a bluff body.
Siggia, E. D. 1985 Collapse and amplification of a vortex filament. Phys. Fluids 28, 794805.Google Scholar
Smith, F. T. 1985 A structure for laminar flow past a bluff body at high Reynolds number. J. Fluid Mech. 155 175191.Google Scholar
Soh, W. K., Hourigan, K. & Thompson, M. C. The shedding of vorticity from a smooth surface.
Takaki, R. & Hussain, A. K. M. F. 1985 Reconnection of vortex filaments and its role in aerodynamic noise. Fifth Symp. Turb. Shear Flows, Sec. 3, pp. 1926, Cornell University Press.
Takaki, R. & Hussain, A. K. M. F. Singular interaction of vortex filaments.
Takematsu, M. & Kita, T. The behaviour of isolated free eddies in a rotating fluid: laboratory experiments.
Tatsumi, T. Dynamics of large-scale eddies in turbulent flows.
Thompson, M. C., Hourigan, K., Welsh, M. C. & Soh, W. K. Prediction of vortex shedding from bluff bodies in the presence of a sound field.
Tokunaga, H., Satofuka, N. & Itinose, K. Full simulation of turbulent shear flows in a plane channel using eighth order accurate method of lines.
Tutty, O. R. & Cowley, S. J. 1986 On the stability and the numerical solution of the unsteady interactive boundary-layer equation. J. Fluid Mech. 168, 431456.Google Scholar
Van Atta, C. W., Gharib, M. & Hammache, M. Three-dimensional structure of ordered and chaotic vortex streets behind circular cylinders at low Reynolds numbers.
Van Der Vegt, J. J. W. Fundamentals of three-dimensional vortex motion around solid bodies.
Viets, H., Piatt, M., Ball, M., Beethke, R. J. & Bougine, D. 1981 Problems in forced, unsteady fluid mechanics. Rep. AFWAL TM-81-148-FIMM, 231 pp.
Wan, Y. H. & Pulvirenti, M. 1985 Nonlinear stability of circular vortex patches. Commun. Math. Phys. 99, 435450.Google Scholar
Wei, Q.-D. & Lin, R.-S. Vortex induced dynamic loads on a non-spinning volleyball.
Weidman, P. D. 1976 On the spin-up and spin-down of a rotating fluid. Part 2. Measurements and stability. J. Fluid Mech. 77, 709735.Google Scholar
Widnall, S. E., Bliss, D. B. & Tsai, C.-Y. 1974 The instability of short waves on a vortex ring. J. Fluid Mech. 66, 3547.Google Scholar
Wu, J.-Z., Wu, J.-M. & Wu, C.-J. A viscous compressible theory on the interaction between moving bodies and flow field in the (ω, θ) framework.
Yamada, H. & Matsui, T. 1978 Preliminary study of mutual slip-through of a pair of vortices. Phys. Fluids 21, 292294.Google Scholar
Yamada, H., Yamabe, H., Itoh, A. & Hayashi, H. Numerical analysis of a flow field produced by a pair of rectilinear vortices approaching a cylinder.
Zabusky, N. J., Hughes, M. H. & Roberts, K. V. 1979 Contour dynamics for the Euler equations in two dimensions. J. Comput. Phys. 30, 96106.Google Scholar