Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-09T22:01:17.974Z Has data issue: false hasContentIssue false

Rendering a subcritical Hopf bifurcation supercritical

Published online by Cambridge University Press:  26 April 2006

Po Ki Yuen
Affiliation:
Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA, 19104-6315, USA
Haim H. Bau
Affiliation:
Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA, 19104-6315, USA

Abstract

It is demonstrated experimentally and theoretically that through the use of a nonlinear feedback controller, one can render a subcritical Hopf bifurcation supercritical and thus dramatically modify the nature of the flow in a thermal convection loop heated from below and cooled from above. In particular, we show that the controller can replace the naturally occurring chaotic motion with a stable, periodic limit cycle. The control strategy consists of sensing the deviation of fluid temperatures from desired values at a number of locations inside the loop and then altering the wall heating to counteract such deviations.

Type
Research Article
Copyright
© 1996 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abed, E. H. & Fu, J. H. 1986 Local feedback stabilization and bifurcation control. I–Hopf bifurcation. Systems Control Lett. 7, 1117.Google Scholar
Bau, H. H. & Torrance, K. E. 1981 Transient and steady behavior of an open, symmetrically heated, free convection loop. Int J. Heat Mass Transfer 24, 597609.Google Scholar
Bau, H. H. & Wang, Y.-Z. 1991 Chaos: a heat transfer perspective. Ann Rev Heat Transfer, IV, (C. L. Tien, editor), 150, Hemisphere.
Chen, T. S. & Joseph, D. D. 1973 Subcritical bifurcation of plane Poiseuille flow. J. Fluid Mech. 58, 337351.Google Scholar
Creveling, H. F., De Paz, J. F., Baladi, J. Y. & Schoenhals, R. J. 1975 Stability characteristics of a single phase thermal convection loop. J. Fluid Mech. 67, 6584.Google Scholar
Doedel, E. 1986 AUTO: Software for Continuation and Bifurcation Problems in Ordinary Differential Equations. Applied Mathematics Report, California Institute of Technology.
Ehrhard, P. & Muller, U. 1990 Dynamical behaviour of natural convection in a single-phase loop. J. Fluid Mech. 217, 487518.Google Scholar
Gorman, M., Widmann, P. J. & Robins, K. A. 1984 Chaotic flow regimes in a convection loop. Phys. Rev. Lett. 52, 22412244.Google Scholar
Gorman, M., Widmann, P. J. & Robins, K. A. 1986 Nonlinear dynamics of a convection loop: a quantitative comparison of experiment with theory. Physica 19D, 255267.CrossRefGoogle Scholar
Hart, J. E. 1984 A new analysis of the closed loop thermosyphon. Intl J. Heat Mass Transfer 27, 125136.Google Scholar
Hart, J. E. 1985 A note on the loop thermosyphon with mixed boundary conditions. Intl J. Heat Mass Transfer 28, 939947.Google Scholar
Hu, H. H. & Bau, H. H. 1994 Feedback control to delay or advance linear loss of stability in planar Poiseuille flow. Proc. R. Soc. Lond. A 447, 299312.Google Scholar
Lorenz, E. N. 1963 Deterministic nonperiodic flow. J. Atmos. Sci. 20. 130141.Google Scholar
Malkus, W. V. R. 1972 Non-periodic convection at high and low Prandtl number. Mem. Soc. R. Sci. Liege (6) IV, 125128.Google Scholar
Robbins, K. A. 1977 A new approach to subcritical instability and turbulent transitions in a simple dynamo. Math. Proc. Camb. Phil. Soc. 82, 309325.Google Scholar
Singer, J. & Bau, H. H. 1991 Active control of convection. Phys. Fluids A 3, 28592865.Google Scholar
Singer, J., Wang, Y.-Z. & Bau, H. H. 1991 Controlling a chaotic system. Phys. Rev. Lett. 66, 11231126.Google Scholar
Sparrow, C. 1982 The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors. Springer.
Tang, J. & Bau, H. H. 1993a Stabilization of the no-motion state in Rayleigh–Bénard convection through the use of feedback control. Phys. Rev. Lett. 70, 17951798.Google Scholar
Tang, J. & Bau, H. H. 1993b Feedback control stabilization of the no-motion state of a fluid confined in a horizontal, porous layer heated from below. J. Fluid Mech. 257, 485505.Google Scholar
Tang, J. & Bau, H. H. 1994 Stabilization of the no-motion state in the Rayleigh–Bénard problem. Proc. R. Soc. Lond. A 447, 587607.Google Scholar
Wang, Y.-Z., Singer, J. & Bau, H. H. 1992 Controlling chaos in a thermal convection loop. J. Fluid Mech. 237, 479498 (referred to herein as WSB).Google Scholar
Welander, P. 1967 On oscillatory instability of differentially heated fluid loop. J. Fluid Mech. 29, 1730.Google Scholar
Widmann, P. J., Gorman, M. & Robins, K. A. 1989 Nonlinear dynamics of a convection loop II: chaos in laminar and turbulent flows. Physica D 36, 157166.CrossRefGoogle Scholar
Yorke, A., Yorke, E. D. & Mallet-Paret, J. 1987 Lorenz-like chaos in partial differential equations. Physica 24D, 279291.Google Scholar
Yuen, P. 1997 Dynamics and control of flow in a thermal convection loop. PhD thesis, University of Pennsylvania.