Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-09T22:06:59.820Z Has data issue: false hasContentIssue false

Relaxation of a dewetting contact line. Part 2. Experiments

Published online by Cambridge University Press:  14 May 2008

GILES DELON
Affiliation:
Physique et Mécanique des Milieux Hétérogènes, ESPCI, 10 rue Vauquelin, 75231 Paris Cedex 05, France
MARC FERMIGIER
Affiliation:
Physique et Mécanique des Milieux Hétérogènes, ESPCI, 10 rue Vauquelin, 75231 Paris Cedex 05, France
JACCO H. SNOEIJER
Affiliation:
Physique et Mécanique des Milieux Hétérogènes, ESPCI, 10 rue Vauquelin, 75231 Paris Cedex 05, France School of Mathematics, University of Bristol, University Walk, Bristol BS8 1TW, UK
BRUNO ANDREOTTI
Affiliation:
Physique et Mécanique des Milieux Hétérogènes, ESPCI, 10 rue Vauquelin, 75231 Paris Cedex 05, France

Abstract

The dynamics of receding contact lines is investigated experimentally through controlled perturbations of a meniscus in a dip-coating experiment. We first describe stationary menisci and their breakdown at the coating transition. Above this transition where liquid is deposited, it is found that the dynamics of the interface can be interpreted as a quasi-steady succession of stationary states. This provides the first experimental access to the entire bifurcation diagram of dynamical wetting, confirming the hydrodynamic theory developed in Part 1. In contrast to quasi-static theories based on a dynamic contact angle, we demonstrate that the transition strongly depends on the large-scale flow geometry. We then establish the dispersion relation for large wavenumbers, for which we find a decay rate σ proportional to wavenumber |q|. The speed dependence of σ is described well by hydrodynamic theory, in particular the absence of diverging time scales at the critical point. Finally, we highlight some open problems related to contact angle hysteresis that lead beyond the current description.

Type
Papers
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ajdari, A., Brochard-Wyart, F., De Gennes, P. G., Leibler, L., Viovy, J. L. & Rubinstein, M. 1994 Slippage of an entangled polymer melt on a grafted surface. Physica A 204, 1739.Google Scholar
Barrat, J.-L. & Bocquet, L. 1999 Large slip effect at a nonwetting fluid-solid interface. Phys. Rev. Lett. 82, 46714674.CrossRefGoogle Scholar
Blake, T. D. & Haynes, J. M. 1969 Kinetics of liquid/liquid displacement. J. Colloid Interface Sci. 30, 421.CrossRefGoogle Scholar
Blake, T. D., de Coninck, J. & D'Ortuna, U. 1995 Models of wetting: Immiscible lattice Boltzmann automata versus molecular kinetic theory. Langmuir 11, 4588.CrossRefGoogle Scholar
Cottin-Bizonne, C., Cross, B., Steinberger, A. & Charlaix, E. 2005 Boundary slip on smooth hydrophobic surfaces: intrinsic effects and possible artifacts. Phys. Rev. Lett. 94, 056102.CrossRefGoogle ScholarPubMed
Cox, R. G. 1986 The dynamics of the spreading of liquids on a solid surface. J. Fluid Mech. 168, 169194.CrossRefGoogle Scholar
Dussan, V. E. B., & Davis, S. H. 1974 On the motion of a fluid-fluid interface along a solid surface. J. Fluid Mech. 65, 7195.CrossRefGoogle Scholar
Dussan, V.E. B., Rame, E. & Garoff, S. 1991 On identifying the appropriate boundary conditions at a moving contact line: an experimental investigation J. Fluid Mech. 230, 97116.CrossRefGoogle Scholar
Eggers, J. 2004 Hydrodynamic theory of forced dewetting. Phys. Rev. Lett. 93, 094502.CrossRefGoogle ScholarPubMed
Eggers, J. 2005 Existence of receding and advancing contact lines. Phys. Fluids 17, 082106.CrossRefGoogle Scholar
de Gennes, P.-G. 1986 a Dynamique d'une ligne triple. C. R. Acad. Sci. Paris 302, 731733.Google Scholar
de Gennes, P.-G. 1986 b Deposition of Langmuir-Blodget layers. Colloid Polymer Sci. 264, 463465.CrossRefGoogle Scholar
Golestanian, R. & Raphael, E. 2001 a Dissipation in dynamics of a moving contact line. Phys. Rev. E 64 031601.Google ScholarPubMed
Golestanian, R. & Raphael, E. 2001 b Relaxation of a moving contact line and the Landau-Levich effect. Europhys. Lett. 55 228234.CrossRefGoogle Scholar
Golestanian, R. & Raphael, E. 2003 Roughening transition in a moving contact line. Phys. Rev. E 67, 031603.Google Scholar
Hocking, L. M. 2001 Meniscus draw-up and draining. Eur. J. Appl. Maths 12, 195208.CrossRefGoogle Scholar
Hoffman, R. L. 1975 Dynamic contact angle. J. Colloid Interface Sci. 50, 228241.CrossRefGoogle Scholar
Huh, C. & Scriven, L. E. 1971 Hydrodynamic model of steady movement of a solid/liquid/fluid contact line. J. Colloid Interface Sci. 35, 85101.CrossRefGoogle Scholar
Jacqmin, D. 2004 Onset of wetting failure in liquid-liquid systems. J. Fluid. Mech. 517, 209228.CrossRefGoogle Scholar
Joanny, J.-F. & de Gennes, P.-G. 1984 Model for contact angle hysteresis. J. Chem. Phys. 11, 552562.CrossRefGoogle Scholar
Landau, L. D. & Levich, B. V. 1942 Dragging of a liquid by a moving plate. Acta Physicochim. URSS 17, 4254.Google Scholar
Landau, L. D. & Lifschitz, E. M. 1959 Fluid Mechanics. Pergamon.Google Scholar
Le Grand, N., Daerr, A. & Limat, L. 2005 Shape and motion of drops sliding down an inclined plane. J. Fluid Mech. 541, 293315.CrossRefGoogle Scholar
Lee, C. L., Polmanteer, K. E. & King, E. G. 1970 Flow behavior of narrow-distribution polydimethylsiloxane J. Polymer Sci. A2 8, 19091916.Google Scholar
Marsh, J. A. & Cazabat, A. M. 1993 Dynamics of contact line depinning from a single defect. Phys. Rev. Lett. 71, 24332436.CrossRefGoogle ScholarPubMed
Nikolayev, V. S. & Beysens, D. A. 2003 Equation of motion of the triple contact line along an inhomogeneous interface. Europhys. Lett. 64, 763768.CrossRefGoogle Scholar
Ondarçuhu, T. & Veyssié, M. 1991 Relaxation modes of the contact line of a liquid spreading on a surface. Nature 352, 418420.CrossRefGoogle Scholar
Oron, A., Davis, S. H. & Bankoff, S. G. 1997 Long-scale evolution of thin liquid films. Rev. Mod. Phys. 69, 931980.CrossRefGoogle Scholar
Pismen, L. M. & Pomeau, Y. 2000 Disjoining potential and spreading of thin liquid layers in the diffuse-interface model coupled to hydrodynamics. Phys. Rev. E 62, 24802492.Google ScholarPubMed
Podgorski, T., Flesselles, J. M. & Limat, L. 2001 Corners, cusps and pearls in running drops 2001. Phys. Rev. Lett. 87, 036102.CrossRefGoogle Scholar
Rahalker, R. R., Lamb, J., Harrison, G., Barlow, A. J., Hawthorn, W., Semlyen, J. A., North, A. M. & Pethrick, R. A. 1984 Viscoelastic studies of linear polydimethylsiloxanes Proc. R. Soc. Lond A 394, 207222.Google Scholar
Rio, E., Daerr, A., Andreotti, B. & Limat, L. 2005 Boundary conditions in the vicinity of a dynamic contact line: experimental investigation of viscous drops sliding down an inclined plane. Phys. Rev. Lett. 94, 024503.CrossRefGoogle ScholarPubMed
Schmatko, T., Hervet, H. & Léger, L. Friction and slip at simple fluid-solid interfaces: the roles of the molecular shape and the solid-liquid interaction. Phys. Rev. Lett. 94, 244501.CrossRefGoogle Scholar
Sedev, R. V. & Petrov, J. G. 1991 The critical condition for transition from steady wetting to film entrainment. Colloids Surf. 53, 147156.CrossRefGoogle Scholar
Semal, S., Bauthier, C., Voué, M., Vanden Eynde, J. J., Gouttebaron, R. & de Coninck, J. 2000 Spontaneous spreading of liquid droplets on mixed alkanethiol monolayers: dynamics of wetting and wetting transition. J. Phys. Chem. B 104, 6225CrossRefGoogle Scholar
Snoeijer, J. H. 2006 Free surface flows with large slopes: beyond lubrication theory. Phys. Fluids 18, 021701CrossRefGoogle Scholar
Snoeijer, J. H., Andreotti, B., Delon, G. & Fermigier, M. 2007 Relaxation of a dewetting contact line. Part 1. A full-scale hydrodynamic calculation, J. Fluid Mech. 579, 6383.CrossRefGoogle Scholar
Snoeijer, J. H., Delon, G., Fermigier, M. & Andreotti, B. 2006 Avoided critical behavior in dynamically forced wetting. Phys. Rev. Lett. 96, 174504.CrossRefGoogle ScholarPubMed
Teletzke, G. F., Davis, H. T. & Scriven, L. E. 1988 Wetting hydrodynamics. Rev. Phys. Appl. (Paris) 23, 9891007.CrossRefGoogle Scholar
Thompson, P. A. & Robbins, M. O. 1989 Simulations of contact-line motion: slip and the dynamic contact angle. Phys. Rev. Lett. 63, 766769.CrossRefGoogle ScholarPubMed
Thompson, P. A. & Troian, S. M. 1997 A general boundary condition for liquid flow at solid surfaces Nature 389, 360362.CrossRefGoogle Scholar
Voinov, O. V. 1976 Hydrodynamics of wetting. Fluid Dyn. 11, 714721.CrossRefGoogle Scholar