Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-08T10:37:28.890Z Has data issue: false hasContentIssue false

A regular Strouhal number for large-scale instability in the far wake of a rotor

Published online by Cambridge University Press:  17 April 2014

Valery L. Okulov*
Affiliation:
Technical University of Denmark, Nils Koppels All’e B403, 2800 Kgs Lyngby, Denmark
Igor V. Naumov
Affiliation:
Institute of Thermophysics, SB RAS, Lavrentyev Ave. 1, 630090 Novosibirsk, Russia
Robert F. Mikkelsen
Affiliation:
Technical University of Denmark, Nils Koppels All’e B403, 2800 Kgs Lyngby, Denmark
Ivan K. Kabardin
Affiliation:
Institute of Thermophysics, SB RAS, Lavrentyev Ave. 1, 630090 Novosibirsk, Russia
Jens N. Sørensen
Affiliation:
Technical University of Denmark, Nils Koppels All’e B403, 2800 Kgs Lyngby, Denmark
*
Email address for correspondence: [email protected]

Abstract

The flow behind a model of a wind turbine rotor is investigated experimentally in a water flume using particle image velocimetry (PIV) and laser Doppler anemometry (LDA). The study performed involves a three-bladed wind turbine rotor designed using the optimization technique of Glauert (Aerodynamic Theory, vol. IV, 1935, pp. 169–360). The wake properties are studied for different tip speed ratios and free stream speeds. The data for the various rotor regimes show the existence of a regular Strouhal number associated with the development of an instability in the far wake of the rotor. From visualizations and a reconstruction of the flow field using LDA and PIV measurements it is found that the wake dynamics is associated with a precession (rotation) of the helical vortex core.

Type
Papers
Copyright
© 2014 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Achenbach, E. 1974 Vortex shedding from spheres. J. Fluid Mech. 62 (2), 209221.CrossRefGoogle Scholar
Adrian, R. J. 1991 Particle imaging techniques for experimental fluid mechanics. Annu. Rev. Fluid Mech. 23, 261304.Google Scholar
Alekseenko, S. V., Kuibin, P. A. & Okulov, V. L. 2007 Theory of Concentrated Vortices. An Introduction. p. 495. Springer.Google Scholar
Chamorro, L. P., Hill, C., Morton, S., Ellis, C., Arndt, R. E. A. & Sotiropoulos, F. 2013 On the interaction between a turbulent open channel flow and an axial-flow turbine. J. Fluid Mech. 716, 658670.CrossRefGoogle Scholar
Glauert, H. 1935 Airplane propellers. In Aerodynamic Theory (ed. Durand, W. F.), vol. IV, pp. 169–360. Springer.Google Scholar
Larsen, G. C., Aagaard Madsen, H., Bingöl, F., Mann, J., Ott, S., Sørensen, J. N., Okulov, V., Troldborg, N., Nielsen, M., Thomsen, K., Larsen, T. J. & Mikkelsen, R.2007 Dynamic wake meandering modeling Risø Report no. Risø-R-1607(EN) Publisher: Risø National Laboratory, ISBN: 978-87-550-3602-4, p. 84.Google Scholar
Mann, J. 1998 Wind field simulation. Probab. Engng Mech. 13 (4), 269282.CrossRefGoogle Scholar
Medici, D. & Alfredsson, P. H. 2006 Measurements on a wind turbine wake: 3D effects and bluff body vortex shedding. Wind Energy 9, 219236.CrossRefGoogle Scholar
Medici, D. & Alfredsson, P. H. 2008 Measurements behind model wind turbine: further evidence of wake meandaring. Wind Energy 11, 211217.CrossRefGoogle Scholar
Nakamura, Y. 1996 Vortex shedding from bluff bodies and a universal Strouhal number. J. Fluids Struct. 10 (2), 159171.Google Scholar
Naumov, I. V., Okulov, V. L., Meyer, K. E., Sørensen, J. N. & Shen, W. Z. 2003 LDA–PIV diagnostics and 3D simulation of oscillating swirl flow in a closed cylindrical container. Thermophys. Aeromech. 10, 143148.Google Scholar
Norman, A. K. & McKeon, B. J. 2011 Unsteady force measurements in sphere flow from subcritical to supercritical Reynolds numbers. Exp. Fluids 51, 14391453.Google Scholar
Okulov, V. L., Naumov, I. V. & Sørensen, J. N. 2007 Optical diagnostics of intermittent flows. Tech. Phys. 77, 4757.Google Scholar
Sakamoto, H. & Haniu, H. 1990 A study on vortex shedding from spheres in a uniform flow. J. Fluids Eng. 112, 386392.Google Scholar
Selig, M. S., Guglielmo, J. J., Broeren, A. P. & Giguere, P. 1995 Summary of Low-Speed Airfoil Data. vol. 1. p. 292. SolarTech Publication.Google Scholar
Sumer, B. M. & Fredsøe, J. 2006 Hydrodynamics around cylindrical structures. In Advanced Series on Ocean Engineering, vol. 26, p. 530. World Scientific.Google Scholar