Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2025-01-04T05:15:51.785Z Has data issue: false hasContentIssue false

The reattachment and relaxation of a turbulent shear layer

Published online by Cambridge University Press:  29 March 2006

P. Bradshaw
Affiliation:
Department of Aeronautics, Imperial College, London
F. Y. F. Wong
Affiliation:
Department of Aeronautics, Imperial College, London

Abstract

Existing experiments on the low-speed flow downstream of steps and fences, and some new measurements downstream of a backward-facing step, are used to demonstrate the complicated nature of the flow in the reattachment region and its effect on the slow non-monotonic return of the shear layer to the ordinary boundary-layer state. A key feature of the flow is found to be the splitting of the shear layer at reattachment, where part of the flow is deflected upstream into the recirculating flow region to supply the entrainment; the part of the flow that continues downstream suffers a pronounced decrease in eddy length scale, evidently because the larger eddies are torn in two. This phenomenon will occur in all cases where a shear layer reattaches after a prolonged region of separation, either at low speed or in supersonic flow. For simplicity, the discussion in the present paper is confined to low-speed flows.

Type
Research Article
Copyright
© 1972 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Antonia, R. A. & Bradshaw, P. 1971 Imperial College, London, Aero Rep. no. 71-04.
Arie, M. & Rouse, H. 1956 J. Fluid Mech. 1, 129.
Bradshaw, P. 1966 J. Fluid Mech. 26, 225.
Bradshaw, P. & Fehriss, D. H. 1965 Nut. Phys. Lab. Aero Rep. 1145 (and addendum 1968).
Bradshaw, P., Ferriss, D. H. & Atwell, N. P. 1967 J. Fluid Mech. 28, 593.
Bradshaw, P., Ferriss, D. H. & Johnson, R. F. 1964 J. Fluid nlech. 19, 591.
Coles, D. 1962 R.A.N.D. Corp. llep. R-403-PR.
Coles, D. & Hirst, E. A. (eds.) 1969 Computation of Turbulent Boundary Layers, Proceedings 1968 AFOSR-IFP-Stanford Conference, vol. 2. Thcrmoscionces Division, Stanford University.
Good, M. C. & Joubert, P. K. 1968 J. FZuid Mech. 31, 547.
Hastinos, R. C. 1963 Aero Res. Counc. R. & M. 3401.
Klebanoff, P. S. 1955 N.A.C.A. Rep. no. 1247.
Kline, S. J., Morkovin, M. V., Sovras, G. & Cockrell, D. J. 1969 Computation of Turbulent Boundary Layers, Proceedings 1968 AFOSR-IFP-Stanford Conference, vol. 1. Thermosciencus Division, Stanford University.
Mcewan, A. D. 1964 Ph.D. thesis, Univorsity of Cambridge.
Mueller, T. J. & Robertson, J. M. 1963 Modern Developments in Theor. Appl. Mech. 1, 326.
Patel, V. C. 1965 J. Fluid Mech. 23, 185.
Peterson, E. W. 1969 Center for Air Environment Studies, Penn. State University Pub. no. 102-69.
Petryk, S. & Brundrett, E. 1967 Department of Mechanical Engineering, University of Waterloo, Res. Rep. no. 4.
Plate, E. & Lin, C. W. 1964 Colorado State University Rept. CER-65-EJP-14, AD-614067.
Tani, I., Iuchi, M. & Komoda, H. 1961 Aero. Res. Inst. University Tokyo Rep. no. 364.
Trompson, B. G. J. 1965 Aero. Res. Counc. R. & M. no. 3463.
Tillman, W. 1945 British Min. of Aircraft Prod. Volkonrodo Translation MAP-VG 34-45T.
Townsend, A. A. 1961 J. Fluid Mech. 11, no, 97.
Wong, F. Y. F. 1970 M.Sc. project report, Imperial College, London.
Wyngaard, J. C., Tennekes, H., Lumley, J. L. & Margolis, D. P. 1968 Phys. Fluids 11, 1251.